sta4sa spatial analysis
SPATIAL ANALYSIS
STA4SA
2015
Credit points: 15
Subject outline
The subject surveys the theory of random fields, spatial processes, spatial statistics models, and their applications to a wide range of areas, including image analysis and GIS (geographic information system). The subject will cover the methodology and modern developments for spatial-temporal modelling, estimation and prediction, and spectral analysis of spatial processes. All the methods presented will be introduced in the context of specific datasets with GRASS and R software.
SchoolSchool Engineering&Mathematical Sciences
Credit points15
Subject Co-ordinatorAndriy Olenko
Available to Study Abroad StudentsYes
Subject year levelYear Level 4 - UG/Hons/1st Yr PG
Exchange StudentsYes
Subject particulars
Subject rules
Prerequisites STA3AS or STA4AS and STA3SI or STA4SI
Co-requisitesN/A
Incompatible subjectsN/A
Equivalent subjectsN/A
Special conditionsN/A
Learning resources
Readings
Resource Type | Title | Resource Requirement | Author and Year | Publisher |
---|---|---|---|---|
Readings | Analysing spatial point patterns in R. | Recommended | Baddeley, A. 2008 | WORKSHOP NOTES, VERSION 3. |
Readings | Applied spatial analysis with R | Recommended | Bivand, R.S., Pebesma, E. J., Gomez-Rubio, V. 2008 | SPRINGER. |
Readings | Statistics for spatial data | Recommended | Cressie, N.A.C 1993 | WILEY |
Graduate capabilities & intended learning outcomes
01. Formulate purposeful questions to explore new statistical ideas and subsequently design valid statistical experiments.
- Activities:
- Students will be given examples of practical problems in GIS, geosciences and environmental sciences. They will learn new statistical techniques to model raster and vector data.
02. Present clear, well structured proofs of important theoretical statistical model results.
- Activities:
- Students will be given examples of proofs of some key results about theoretical properties of spatial statistical models. Based on information provided in lectures they repeat proofs in details or modify proofs for similar models.
03. Creatively find solutions to real world problems consistent with those commonly faced by practicing statisticians.
- Activities:
- Students will be introduced to practical analysis of spatial data using R and GRASS software and examples of different real spatial data sets.
04. Professionally defend or question the validity of existing statistical analyses and associated evidence-based conclusions that are derived via application of sound spatial statistical methodology.
- Activities:
- Students will be given examples of analyses and interpretations of spatial information. Based on information provided in lectures/computer labs they repeat analyses for similar data.
Subject options
Select to view your study options…
Melbourne, 2015, Semester 1, Day
Overview
Online enrolmentNo
Maximum enrolment sizeN/A
Enrolment information
Subject Instance Co-ordinatorAndriy Olenko
Class requirements
Lecture/PracticalWeek: 10 - 22
One 2.0 hours lecture/practical per week on weekdays during the day from week 10 to week 22 and delivered via face-to-face.
"Two contact hours per week."
Assessments
Assessment element | Comments | % | ILO* |
---|---|---|---|
Four assignments | 40 | 01, 02, 03, 04 | |
one 3-hour examination | 60 | 02, 03, 04 |