PREDICTIVE ANALYTICS
BUS5PA
2019
Credit points: 15
Subject outline
The information age has combined with the widespread adoption of digital technology to turn information into a key business asset. Organizations now have access to massive volumes of data from diverse sources and require skills and expertise in making sense of this information for strategic decision making. Predictive analytics refers to a variety of statistical and analytical techniques used to develop models that predict future events from data. This subject will provide you with the knowledge and skills to build and use predictive models in real business scenarios. You will be given the opportunity to gain hands-on experience with one of the globally most widely used predictive analytics software tools. Case studies such as target marketing and customer churn analysis will be used to demonstrate the business value of predictive analytics. A number of related data mining and machine learning techniques such as neural networks, decision trees, customer segmentation and profiling will also be taught. The effect of big data, stream analysis and text analytics on traditional predictive techniques will also be discussed.
School: La Trobe Business School
Credit points: 15
Subject Co-ordinator: Damminda Alahakoon
Available to Study Abroad Students: No
Subject year level: Year Level 5 - Masters
Exchange Students: No
Subject particulars
Subject rules
Prerequisites: BUS5PB or BUS5DWR; or enrolled in SMDS or HMSA or HGSA
Co-requisites: N/A
Incompatible subjects: N/A
Equivalent subjects: N/A
Special conditions: N/A
Learning resources
Readings
| Resource Type | Title | Resource Requirement | Author and Year | Publisher |
|---|---|---|---|---|
| Readings | Data mining for Business Analytics: Concepts, Techniques and Applications with JMP Pro | Recommended | Shmueli et al, 2016 | Wiley & Sons |
| Readings | Data Science for Business: What you need to know about data mining and data analytic thinking | Recommended | Provost and Fawcett | O'Reilly Media |
| Readings | Predictive Modelling with SAS Enterprise Miner: Practical Solutions for Business Analytics Applications, 3rd eds | Recommended | Sarma, 2017 | SAS Institute |
Graduate capabilities & intended learning outcomes
01. Appraise and differentiate the key statistical theories and data mining techniques focussing on their suitability to solve predictive analytics problems
- Activities:
- Weekly lectures where the concepts and theories are discussed and weekly practical hands on workshops using appropriate software to apply the theory to practical problems
- Related graduate capabilities and elements:
- Literacies and Communication Skills(Writing,Quantitative Literacy)
- Inquiry and Analytical Skills(Critical Thinking,Creative Problem-solving)
- Discipline -Specific Knowledge and Skills(Discipline-Specific Knowledge and Skills)
02. Combine different predictive analytics models with data mining techniques to formulate solutions for business problems
- Activities:
- Weekly lectures where the concepts and theories are discussed and weekly practical hands on workshops using appropriate software to apply the theory to practical problems
- Related graduate capabilities and elements:
- Literacies and Communication Skills(Writing,Quantitative Literacy)
- Literacies and Communication Skills(Writing,Quantitative Literacy)
- Inquiry and Analytical Skills(Critical Thinking,Creative Problem-solving)
- Discipline -Specific Knowledge and Skills(Discipline-Specific Knowledge and Skills)
03. Appraise the need of different predictive analytics models and techniques evaluate the value of such models and justify the inclusion of particular techniques in a case study
- Activities:
- Weekly lectures where the concepts and theories are discussed, reading material provided in LMS and weekly practical hands on workshops using appropriate software to apply the theory to practical problems
- Related graduate capabilities and elements:
- Literacies and Communication Skills(Writing,Quantitative Literacy)
- Inquiry and Analytical Skills(Critical Thinking,Creative Problem-solving)
- Personal and Professional Skills(Study and Learning Skills)
- Discipline -Specific Knowledge and Skills(Discipline-Specific Knowledge and Skills)
City Campus, 2019, Semester 2, Night
Overview
Online enrolment: Yes
Maximum enrolment size: 120
Enrolment information: Limits of learning space Order of application
Subject Instance Co-ordinator: Damminda Alahakoon
Class requirements
Lecture/WorkshopWeek: 31 - 43
One 3.0 hours lecture/workshop per week on weekdays at night from week 31 to week 43 and delivered via face-to-face.
Assessments
| Assessment element | Comments | % | ILO* |
|---|---|---|---|
| Building and Evaluating Predictive Models | 1500 word equivalence | 30 | 01, 02 |
| Cluster Analysis and Predictive Modelling | 1500 word equivalence | 30 | 02, 03 |
| Predictive Analytics Case Study | 2000 word equivalence | 40 | 01, 02, 03 |