Molecular modeling and computer-aided drug design

Work in understanding biochemical process is directed in two areas: gas-phase studies of biologically important molecules, and modelling of inhibitor-protein interactions. That is, computational drug design.

In the area of medicinal chemistry we are looking at kinases – a group of proteins that are involved in the signalling pathways of a whole bunch of different diseases, including cancer and Alzheimer's. If we could stop these kinases working, we could target those disease states. Our group uses molecular modelling programs to design small molecules that block the kinases' active sites. We collaborate with medicinal chemists and biologists in the design, synthesis and testing of new compounds. We are also interested in benchmarking molecular modelling methods, with the aim of better understanding the performance (accuracy and reproducibility) of such statistical-based methods.

In the area of gas-phase chemistry we probe the structures and reactions of gas-phase ions. That is, we are modelling mass spectrometry and spectroscopy. One particular interest are gas-phase basicities, acidities and proton affinities (PA) of molecules of biochemical interest, such as amino acids. We collaborate with experimental colleagues in unraveling the complex spectra obtained from conformationally flexible molecules.