Theme Leader

E Lee - Cell death and survival pathways

Our group examines the molecular mechanisms underlying cell fate decisions dictated by the processes of apoptosis and autophagy.


Fairlie - Apoptosis, autophagy, cancer, drug development and peptides

Our group use a combination of biochemistry, cell biology, structural biology and medicinal chemistry approaches to understand the precise molecular mechanisms that control apoptosis.

Greening - Extracellular vesicles, exosomes, cancer biology and uterine biology

Our group uses an integrated system biology approach to understand extracellular communication in the context of the tumour microenvironment and uterine development.

Hawkins - Cell death regulation in cancer and viral infection

Our group examines apoptotic regulation in normal cells, cancerous cells and virally-infected cells. We use this knowledge to explore better and safer therapies for cancer and viral diseases.

Hoogenraad - Development of therapeutic antibodies against cachexia

Our group specialises in cancer cachexia, a complication of cancer that is responsible for around 25% of cancer deaths.

Humbert - Cancer biology, cell polarity and tissue architecture

Our laboratory is interested in how cell asymmetry and tissue organisation can regulate cancer initiation, progression and metastasis.

M Lee - Structural biology in gene regulation and DNA damage repair pathway

Our group characterises the macromolecular complexes in the nucleus to understand their roles in gene regulation and DNA damage repair pathway.

Mathivanan - Exosomes, secretome and systems biology

Our group explores the role of extracellular matrix components (soluble secreted proteins and extracellular vesicles) in cancer and intercellular communication.

Simpson - Cancer secretome, extracellular communication, exosome and extracellular vesicle biology

Our group utilizes an integrated proteomic/genomic strategy to understand the role of the extracellular environment in cancer progression.

Truscott - Mitochondrial protein homeostasis

Our group studies the function of mitochondrial proteins involved in the biogenesis and maintenance of mitochondria at the molecular level.

Whelan - Biophysics, DNA damage, fluorescence, single molecule imaging

Our group develops and applies advanced fluorescence imaging techniques to visualize cells at the single molecule and nano-scale. In particular, we are working to understand DNA damage and repair.