Peptide-membrane interactions

Disruption of the integrity of cellular membranes underpins a broad spectrum of biophysical processes throughout the biological realm, from immunity to apoptosis. While this apparently simple process plays a variety of roles in nature, the mechanism of membrane disruption is not fully understood. One of the key processes of interest is membrane disruption by antimicrobial peptides. Antimicrobial peptides that provide innate immunity against pathogens in most living organisms disrupt the cytoplasmic membrane of pathogens, facilitate the efflux of essential ions, and thereby disrupt ionic homeostasis.

We study the molecular mechanism of antimicrobial peptide-membrane interaction. The focus is on identifying the factors contributing to the specificity and selectivity of these peptides towards pathogenic membranes. To achieve this goal, we study the role of lipid composition, peptide sequence, the physiological environment and temperature at various stages of the interaction, and the role these factors play in switching between disruptive and non-disruptive interaction pathways. The long term goal is to develop novel peptide-based broad spectrum antibiotics for last resort applications in the clinical setting.