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melody = rhythm + pitch

This is not actually the mathematical part.
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Rhythm

Rhythm: a regular, recurring motion. Some pattern of beats, to
be repeated.

Ostinato (Beethoven, Symphony No. 7, 2nd movement.)
Rhythm can form the underlying structure over which a
melody (with its own rhythm) sits.

(Such as the bass line and also the time signature.)
This often gives a second layer of rhythm: rhythm within
rhythm.

(Emphasis at start of phrasing.)
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Rhythm

Rhythm: a regular, recurring motion. Some pattern of beats, to
be repeated.

Not all rhythms repeat frequently enough to be easy to analyse
from a combinatorial perspective.

Example

Rite Of Spring (Stravinsky, 1913): extremely rhythmic music,
but not repeating in any simple fashion.
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Rhythm abstraction

Onset rhythm: a simplification, for mathematical study
We record only the onset of a beat.
There is an underlying “timespan” of possible beats.
Some of the positions of this timespan are taken as onsets
of a beat.

Example. The paradiddle as a series of pulses.
Timespan (n=8)︷ ︸︸ ︷

· · · · · · · ·

× · · × · × × ·︸ ︷︷ ︸
Beats
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Rhythm abstraction

The paradiddle again

× · · × · × × ·

We could also think of this as:
As a subset of {0,1,2,3,4,5,6,7}: {0,3,5,6}
As a sequence of lengths: 3 + 2 + 1 + 2
As a binary sequence: 10010110 (or LRRLRLLR?)
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Rhythm abstraction

The paradiddle again

× · · × · × × ·
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Represent the beats as
coloured beads on a neck-
lace. Or on a “clockface”: here
with only 8 hours!
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Rhythm abstraction

The paradiddle again

× · · × · × × ·

We could even forget about the
numbers (and the clock hands!)
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Rhythm abstraction

The paradiddle again

× · · × · × × ·

Here it is syncopated by one
beat (shifted). This corresponds
to adding 1 “hour” on the clock-
face.
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Rhythm abstraction

The paradiddle again

× · · × · × × ·

Here it is syncopated by two
beats.



Rhythm Counting rhythms Even spacing Nonrepeating rhythms

Rhythm abstraction

The paradiddle again

× · · × · × × ·

We’ll consider two rhythms as
the same if they correspond
to the same necklace: if they
agree up to syncopation.
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The number of rhythms

There are a lot of rhythms, even allowing for our simplifications.
No. of beats: 1 2 3 4 5 6 7 8

16 1 8 35 116 273 1505 715 810

Burnside counting. These numbers can be obtained by
analysing the symmetries of the necklace and counting the
number of beat placements that are unchanged by each
symmetry.
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An example symmetry:
rotate clockwise by 1/4
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The number of rhythms

There are a lot of rhythms, even allowing for our simplifications.
No. of beats: 1 2 3 4 5 6 7 8

16 1 8 35 116 273 1505 715 810

Burnside counting. These numbers can be obtained by
analysing the symmetries of the necklace and counting the
number of beat placements that are unchanged by each
symmetry.

A beat placement fixed by
this symmetry.
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More counting

Asymmetric
A rhythm is asymmetric if it cannot be split into two equal length
patterns, each with an onset on the first position. (Generalises.)

Cyclic shifts of the paradiddle with pulse on first beat

× · · × · × × ·
× · × × · × · ·
× · × · · × · ×
× · · × · × × ·

The paradiddle is
asymmetric

Assymmetry is a common feature of exotic rhythms in world
music. Assymmetric rhythms are inherently syncopated.
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Counting asymmetric rhythms and other restricted forms of
rhythm is a substantially harder task. This and other properties
are examined in the article

Assymmetric rhythms and Tiling cannons, by
R.W. Hall and P. Klingsberg, 113 American Mathematical
Monthly (2006), 887–896.
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Spacing beats evenly

Polyrhythm
Play a onsets over the top of b onsets.

Find lowest common multiple m of a and b. “Stretch” the
timespan to m, and merge the two patterns

Example 3 against 5
Lowest common multiple is 15.

5’s :× · · · · × · · · · × · · · ·
3’s :× · · × · · × · · × · · × · ·

Both: × · · × · × × · · × × · × · ·

Interesting, widely used effect.
Mathematical, but not so deep, mathematically.
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Spacing beats in some time span

What if we want to stay within the original timespan?
For some k ≤ n, place k beats as evenly as possible but
keeping to positions in the n beat timespan.
Obviously easy if k divides n, but otherwise, there has to
be some unevenness.

Example: 2 in 4

× · × · (When repeated, the “same” as just × ·)

Example 2 in 5?
Choices:
× · · × ·
× × · · ·

Intuitively, the first is more even?



Rhythm Counting rhythms Even spacing Nonrepeating rhythms

Spacing beats in some time span

What if we want to stay within the original timespan?
For some k ≤ n, place k beats as evenly as possible but
keeping to positions in the n beat timespan.
Obviously easy if k divides n, but otherwise, there has to
be some unevenness.

Example: 2 in 4

× · × · (When repeated, the “same” as just × ·)

Example 2 in 5?
Choices:
× · · × ·
× × · · ·

Intuitively, the first is more even?



Rhythm Counting rhythms Even spacing Nonrepeating rhythms

Spacing beats in some time span

What if we want to stay within the original timespan?
For some k ≤ n, place k beats as evenly as possible but
keeping to positions in the n beat timespan.
Obviously easy if k divides n, but otherwise, there has to
be some unevenness.

Example: 2 in 4

× · × · (When repeated, the “same” as just × ·)

Example 2 in 5?
Choices:
× · · × ·
× × · · ·

Intuitively, the first is more even?



Rhythm Counting rhythms Even spacing Nonrepeating rhythms

Spacing beats in some time span

What if we want to stay within the original timespan?
For some k ≤ n, place k beats as evenly as possible but
keeping to positions in the n beat timespan.
Obviously easy if k divides n, but otherwise, there has to
be some unevenness.

Example: 2 in 4

× · × · (When repeated, the “same” as just × ·)

Example 2 in 5?
Choices:
× · · × ·
× × · · ·

Intuitively, the first is more even?



Rhythm Counting rhythms Even spacing Nonrepeating rhythms

Spallation Neutron Source Accelerator
E. Bjorklund, from The Theory of Rep-Rate Pattern Generation
in the SNS Timing System, Technical Report, Los Alamos USA
(2003).
“The strategy of the SNS timing system is to distribute the
timing patterns as evenly as possible over the 10-second (600
pulse) super-cycle.” . . .
“The optimal pattern is not so obvious, however, when n=87”
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Measures of evenness

Classifying notions of evenness seems to have been one of the
deeper theoretical tasks in the study of rhythms. The following
article is arguably the most satisfactory culmination of the
various approaches.

The distance geometry of music by E.D. Demaine,
F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian,
G.T. Toussaint, T. Winograd, D.R. Wood. Computational
Geometry: Theory and Applications 42 (2009), 429–454.
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Some measures of evenness

Pairwise geodesic distance sum
The geodesic distance between two points is the shortest path
around the circle circumference between the points.

The sum of all pairwise geodesic distances in the left rhythm is
14, but it is 16 in the right. The right is more evenly spaced.
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Some measures of evenness

Pairwise geodesic distance sum
The geodesic distance between two points is the shortest path
around the circle circumference between the points.

Two rhythms of 5 beats in 16.
The sum of all pairwise geodesic distances in both rhythms is
48.
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Some measures of evenness

Pairwise chordal distance sum
The chordal distance between two points is the actual
Euclidean distance between the points.

Two rhythms of 5 beats in 16.
The sum of all pairwise chordal distances in both rhythms is
greater in the right hand rhythm.



Rhythm Counting rhythms Even spacing Nonrepeating rhythms

Some measures of evenness

Pairwise chordal distance sum
The chordal distance between two points is the actual
Euclidean distance between the points.

Two rhythms of 5 beats in 16.
The sum of all pairwise chordal distances in both rhythms is
greater in the right hand rhythm.



Rhythm Counting rhythms Even spacing Nonrepeating rhythms

A good result.

Theorem
Demaine et al. show that for any k ≤ n there is a unique
(up to cyclic shift) timespan n rhythm of k beats that
maximises pairwise chordal distance sum.
Also: several existing algorithms for producing evenly
spaced rhythms actually achieve this uniquely spaced
rhythm.

These “Euclidean rhythms” are very common amongst
apparently complicated exotic rhythms found in world music.

A neat corollary
The reverse of a Euclidean rhythm is also a Euclidean rhythm.
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Euclidean algorithm

One of the oldest algorithmic processes (from around 300BC).

Finding greatest common divisor of n and k

If n = k then return k .
Otherwise, subtract k from n to produce n − k .
Repeat process for the smaller two of k ,n − k .

Example: n = 16, k = 6.

16− 6 = 10
10− 6 = 4
6− 4 = 2
4− 2 = 2
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Bjorklund’s algorithm

Comparison between Euclid and the Bjorklund algorithm;
n = 16, k = 6.

16− 6 = 10
10− 6 = 4
6− 4 = 2
4− 2 = 2
2− 2 = 0

1,1,1,1,1,1 0,0,0,0,0,0,0,0,0,0
10, 10, 10, 10, 10, 10 0,0,0,0
100, 100, 100, 100, 10, 10
10010, 10010 100, 100
10010100 10010100

The fact that this rhythm is simply a smaller rhythm played twice
is because g.c.d(16,6) = 2.
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Spacings are also maximised by taking closest path walks in an
integer lattice.
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Rhythm: for 5 onsets out of 16.



Rhythm Counting rhythms Even spacing Nonrepeating rhythms

Another approach

Spacings are also maximised by taking closest path walks in an
integer lattice.

4 8 12 16

1

2

3

4

5

0

x

x

x

x

x

Rhythm: for 5 onsets out of 16.



Rhythm Counting rhythms Even spacing Nonrepeating rhythms

Some easy cases.

2 in 3

× × ·
Hmmm.

3 in 4

× × × ·



Rhythm Counting rhythms Even spacing Nonrepeating rhythms

Some easy cases.

2 in 3

× × ·
Hmmm.

3 in 4

× × × ·



Rhythm Counting rhythms Even spacing Nonrepeating rhythms

Some easy cases.

2 in 5

× · · × ·

Take 5 (Dave Brubeck quartet, 1961)

3 in 8 and 5 in 8

× · · × · · × ·
and × · × × · × × ·

Rock and Roll Hound Dog; Elvis Presley version (1956).

Metal Orion, by Metallica (1986).

The 3 + 3 + 2 rhythm is very widely encountered in both world
music and modern rock music derivatives.
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Some other divisions of basic timespans

5 in 16

× · · × · · × · · × · · × · · ·

The Bossa Nova clave rhythm Soul Bossa Nova Quincy
Jones (1962).
Bela Lugosi is Dead Bauhaus (1979). “Often considered

to be the first gothic rock record released.”

Codex Radiohead (2011); piano (as 4 + 3 + 3 + 3)

Against 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2:
× · · · × · · × · · × · · × · ·
× · × · × · × · × · × · × · × ·
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Inevitably uneven divisions of nonstandard timespans

4 in 13

× · · × · · × · · × · · ·

Golden Brown The Stranglers (1981).

4 in 11

× · · × · · × · · × ·

Right in Two Tool (2006).
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4 in 13

× · · × · · × · · × · · ·

Golden Brown The Stranglers (1981).

4 in 11

× · · × · · × · · × ·

Right in Two Tool (2006).
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Even more challenging

World music examples offer even more outrageous
combinations.

7 in 15

× · × · × · × · × · · × · × ·

Bucimis Traditional Bulgarian; here performed by Eblen
Macari Trio (live 2003).
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Even spacing in scales

7 note scales
Choose 7 notes, as evenly as possible from the 12 semitones.
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Even spacing in scales

5 note scales
Choose 5 notes, as evenly as possible from the 12 semitones.

Pentatonic scales: precise keys depend on where you start.
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Octatonic scales

Choosing 8 out of 12 notes

The octatonic scales correspond to equal spacing of 8 in 12;
there are essentially two of them.

Arguably too much symmetry (g.c.d(8,12) = 4).
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Choosing 8 out of 12 notes

The octatonic scales correspond to equal spacing of 8 in 12;
there are essentially two of them.

Arguably too much symmetry (g.c.d(8,12) = 4).
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Outline

1 Rhythm

2 Counting rhythms

3 Even spacing

4 Nonrepeating rhythms
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A very familiar rhythm

365 + 365 + 365 + 366 + 365 + 365 + 365 + 366 + . . .
· · ·+ 365 + 365 + 365 + 366 + 365 + 365 + 365 + 365 + 365 +
365 + 365 + 366 + . . .

A calendar strategy

365 days is a little bit short for the “real” year.
Add an extra day if the approaching summer solstice would
otherwise occur a calendar day later than usual.

This is an example of a “Sturmian word”; widely studied in the
context of dynamical systems and combinatorics of infinite
patterns. And closely related to the Euclidean rhythms.
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Infinite words are just 1-dimensional tilings
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Desirable properties of infinite “rhythms”

1 Patterns that are heard are reheard at regular intervals.
2 There are relatively few patterns of a given length that

occur.

A repeated finite rhythm has all these properties
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Desirable properties of infinite “rhythms”

1 Patterns that are heard are reheard at regular intervals.
2 There are relatively few patterns of a given length that

occur.

A repeated finite rhythm has all these properties

Example: a period 3 word
110110110110110110110110110110110 . . .

There are at most 3 different subwords of any finite length:
Length one: 0,1
Length two: 01,10,11
Length six: 110110,101101,011011.
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Desirable properties of infinite “rhythms”

1 Patterns that are heard are reheard at regular intervals.
2 There are relatively few patterns of a given length that

occur.

A repeated finite rhythm has all these properties

These are very important and widely studied mathematical
Item 1 is essentially uniform recurrence: associated with
minimal dynamical systems.
Item 2 relates to the entropy of the dynamical system.
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Patterns that are heard are reheard at regular intervals

Uniform recurrence
An infinite “word” is uniformly recurrent if for every number k
there is a number nk such that any length k pattern that
appears, appears somewhere within every pattern of length nk .

Example: the Thue-Morse sequence
Fixed point of 0 7→ 01, 1 7→ 10.
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Patterns that are heard are reheard at regular intervals

Uniform recurrence
An infinite “word” is uniformly recurrent if for every number k
there is a number nk such that any length k pattern that
appears, appears somewhere within every pattern of length nk .

Example: the Thue-Morse sequence
Fixed point of 0 7→ 01, 1 7→ 10.

011010011001011010010110011010011001011001101001 . . .

Thue-Morse sequence arises in:
number theory, combinatorics, dynamical systems, semigroup
and group theory, chess and more!
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Self similarity in words: The Thue-Morse Sequence

011010011001011010010110011010011001011001101001 . . .

011010011001011010010110011010011001011001101001 . . .

This sort of self-similarity property is common amongst words
defined as fixed points of substitutions.
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Paradiddle of parradiddle of paraddidle of. . .

Left paradiddle: LRRLRLLR
Right paradiddle: RLLRLRRL

A left paradiddle of parradiddles

LRRLRLLR︸ ︷︷ ︸
Left

RLLRLRRL︸ ︷︷ ︸
Right

RLLRLRRL︸ ︷︷ ︸
Right

LRRLRLLR︸ ︷︷ ︸
Left

RLLRLRRL︸ ︷︷ ︸
Right etc

The Thue-Morse sequence is just the paradiddle of paradiddle
of paradiddle of. . .
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Thue-Morse

Layered Thue-Morse rhythm

0 1
0 1 1 0
0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

Etcetera!
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Sturmian words

Complexity
In an eventually periodic infinite word, the number of length
k subwords is at most the period length.
Otherwise though, the number of subwords of length k in
an infinite pattern is at least k + 1.

Words achieving this minimal nonbounded growth rate are
called Sturmian words.

Sturmian words
Sturmian words are precisely those obtained by taking a line of
irrational slope and approximating it by a walk in the integer
lattice! They are also uniformly recurrent.
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A line of golden ratio slope

Golden Ratio Rhythm
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Paperfolding rhythm

Paperfolding word; aka Dragon Curve word

A remarkable uniformly recurrent fractal word can be obtained
by folding paper.

Keep folding to the right until you get bored.
Unfold, and record the pattern of valleys and peaks
amongst the creases.

11011001110010011101100011001001110110011100. . .

The Dragon’s Rhythm sounds pretty good too!

The Dragon’s Rhythm (Here over 4/4 time.)

This curve is the fixed point of the substitution 11 7→ 1101,
10 7→ 1100, 01 7→ 1001, 00 7→ 1000.
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Some references

Aside from the two articles mentioned above, the following
resources are excellent sources of information on infinite
words.

M. Lothaire, Algebraic Combinatorics on Words,
Encyclopedia of Mathematics and its Applications, 90,
Cambridge University Press 2002.
Jean-Paul Allouche and Jeffrey Shallit, Automatic
Sequences, Cambridge University Press 2003.
Jean-Paul Allouche and Jeffrey Shallit The Ubiquitous
Prouhet-Thue-Morse Sequence, in C. Ding. T. Helleseth,
and H. Niederreiter, eds., Sequences and Their
Applications: Proceedings of SETA ’98, Springer-Verlag,
1999, pp. 1–16. (Search the web.)
Both Wikipedia and Eric Weisstein’s MathWorld (a Wolfram
resource) also have a huge amount of information!
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