IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2018 1

Supplementary Document for the Paper “Visualising
the Evolution of Computer Programs for Genetic
Programming”

Su Nguyen, Member, IEEE and Mengjie Zhang, Senior Member, IEEE and Damminda Alahakoon,
and Kay Chen Tan, Fellow, IEEE

I. VISUALIZING FITNESS DIVERSITY AND PHENOTYPIC DIVERSITY
A. Cross-generational visualisation

This section presents the visualisation of Genetic Programming (GP) evolution, in which the color of nodes in Growing
Neural Gas (GNG) network represent the fitnesses of evolved programs (ranging from green, i.e. good programs, to red, i.e.
bad programs). The fitness-based visualisation of GNG networks for TGP (default), TGP-M, TGP-L, TGP-H, SGP, and MGP
are presented from Fig. Al to Fig. A6 (the detailed discussions of these GP algorithms can be found in the paper). The
visualisation results here can be used along with the visualisation in Figs. 4-9 (in the paper) to gain more insights about the
GP evolutionary process. By comparing these figures, we can confirm that the areas where GP algorithms are indeed the areas
with better fitness values. Table Al is similar to Table IV in the paper but is enriched with the patterns from fitness-based
visualisation.

(c) Generation 20

A
7 /\\‘XA

/N

< L /\
& AV

(d) Generation 30 (e) Generation 40 (f) Generation 50

Fig. Al. TGP with high crossover rate default parameters, crossover rate of 80%, mutation rate of 15%. The x-axis and the y-axis are for the first and second
principal components respectively obtained from PCA. Nodes which are close to each other represent programs with similar phenotypic characteristics or
behaviours. The color of a node represents the fitness values of the corresponding generated programs (red for the worst fitness and green for the best fitness).

B. Generation snapshot

This section shows the snapshots at Generation 25 from multiple independent runs of the four GP algorithms presented in
the paper. These snapshots are similar to ones presented in Fig. 11 in the paper. From these snapshots we can see the common
patterns for each algorithm.

The snapshots of the tree-based GP (TGP) are shown in Figs A7-A8. The most common pattern here is that most programs
are located in the area with high fitnesses and programs get worse as they move away from this area. This further supports

IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2018 2

SEARE
7

7
(> 4
% AN
\)\
‘vé«v,‘gq A"A% 7
%= AN

AV AN
¥ .{%&&EQ%&@
PR AR
e

\w,

0N
d

(d) Generation 30

Fig. A2. TGP with high mutation rate (TGP-M).

.2 1'&'-’1;&\ "7

% .,

)

(a) Generation 1

(d) Generation 30 (e) Generation 40 (f) Generation 50

Fig. A3. TGP with low selection pressure (TGP-L).

our claim in Section V.D in the paper. The pattern in Run 1 is different because TGP has not yet converged in this particular
run.

The snapshots of the TGP with low selection pressure (TGP-L) are shown in Figs A9—A10. In all snapshots, we can see
that TGP-L explore the search space much more aggressively as compared to the default TGP above. Because the network
obtained with TGP-L covers a larger area, it is more difficult to discriminate bad programs from good programs although there
are some correlations between phenotypic characteristics and program fitnesses. This indicates that the search space of evolved
programs are very complex with multiple local optima.

The snapshots of surrogate-assisted GP (SGP) are shown in Figs A11-A12. Due to the pre-selection scheme based on the
surrogate model, it is more likely for SGP to generate good programs as compared to TGP or TGP-L. As compared to TGP-L,

IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2018 3

_.,
{4

7]

e
<J

(

Pa
N
e

tA
{]

o

‘ N
Q@A

(d) Generation 30

Fig. A4. TGP with high selection pressure (TGP-H).

e WA N —
B N > % 7 v
i | { LTI
AN T

(d) Generation 30 (e) Generation 40 (f) Generation 50

Fig. AS. Surrogate-assisted GP.

SGP still maintains a good diversity in the population but focuses the search on a more restricted area.

The snapshots of multipopulation GP (MGP) are shown in Figs A13—A14. MGP is similar to SGP in term of maintaining
a large number of good programs in the population but tends to form two main clusters (labeled with 0 and 1) for the
two subpopulations. This pattern suggests that the genetic materials or building blocks from each subpopulation do restrict
behaviours of programs evolved in that subpopulation. Certain building blocks will be more useful to explore programs with
certain characteristics.

IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2018 4

(d) Generation 30 (e) Generation 40 (f) Generation 50

Fig. A6. Multipopulation GP.

TABLE Al
COMMON OBSERVED PATTERNS FROM FITNESS-BASED VISUALISATION
. Algorithm
Pattern Behaviour TOP-C [TOPM [TOPL [TGP | SGF | WGP
Large number of components and nodes with | initialisation, random search O O O O O @]
different colours
Large nodes with different colours scattered | uninformed or ill-informed ex- 00 00O (@])]O) O O @]
randomly over the network ploration
Network rotation genetic drift (@)} QOO QOO [®])} [@] b]O] QOO
Large nodes in a narrow “greener” area of the | exploitation, convergence 00 o0) 0O [)JOI) [)OI}
network and only a few “red” nodes
Large “green” nodes in a wide area of the | exploitation, exploration O} © [)OI [)OI}
network
Large nodes forming multiple “green” clusters | exploitation, exploration [)]0)
in the network

O: first generations; @: early generations; ®: mid-generations; (J: later generations

II. PSEUDO CODES FOR GP ALGORITHMS

Fig. A15 shows the pseudo code for the TGP algorithm examined in the paper. Each program A; contains two trees
for dispatching rules and routing rules. To apply crossover and mutation, a random program is selected based on tournament
selection. From the selected program, a random tree is selected and the genetic operations are applied to generate new programs.

Fig. A16 shows the pseudo code for the surrogate-assisted GP (SGP) algorithm. This is similar to TGP except that an
intermediate population P’ is produced by genetic operations and nearest neighbor is used to quickly estimate fitnesses of
newly generated programs before moving the most promising programs to P for the next generation. To improve the diversity,
the size of P’ will be much bigger than P (in our experiments | P'| = 5| P| and duplicated programs (based on their phenotypic
characteristics) are allowed in P. The multipopulation GP (MGP) is similar to SGP but with two subpopulations. During the
evolution, the shared archive A is used for estimating the fitnesses of programs in their corresponding intermediate population.

IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2018

(a) Run 1 (b) Run 2

\ 1 :
/| /
/ ~
- \
»
(©) Run 3 (d) Run 4

Fig. A7. Visualizing fitness diversity and phenotypic diversity of TGP — Generation 25.

IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2018

| e
o o o"/ ¥ @0
8§t i
K |
—
(a) Run 5

»® oot S \

R \ \

[LY
\
(c) Run 7
SN
/ o ‘/ L 0 -
® (Y ”‘
(¢) Run 9

Fig. A8. Visualizing fitness diversity and phenotypic diversity of TGP — Generation 25 (cont.).

(b) Run 6

(d) Run 8

() Run 10

IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2018

\

/ \ . ~ ,\ /# }\\/ ;
y

‘/0
L] -
¢
e e /
g 3o,
(a) Run 1 (b) Run 2
e ht ’ ° A
/

.\‘\‘ [¢ ¢ B "x .Sl <
\.'-‘ [\\ g ". ! 4
*— B AN 4 ° s ° .

L ¥, \ o« es D
99 3 y y - o ® :\)
- . { a/ ~. °®
» /.
Il
N]‘“
(c) Run 3 (d) Run 4
O N~
N . KSR
T ‘ ia o . i '
R) - o
| o A . ‘ ¢
L] % o @ N “
° . * .b QJ, I
{] s
L} N \. . ’.. % e — \ X
o oo /TN
N 3 .T o0 o e ge Y 1
(e) Run 5 (f) Run 6

Fig. A9. Visualizing fitness diversity and phenotypic diversity of TGP-L — Generation 25.

IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2018

R ®
¥ L N J e
TR . * !
e " a " o.’ L RN v
i e . \
o °
| - /
(a) Run 7 (b) Run 8
- » -
- o / ~ °
N \ «
, / N
: L N N 1 >3 /
«® Py \/ X A R
' . o & 7) ,
1) WA
0% AR
o MRS R e *
2 \ \ /
/Q ‘ . R. ®e £
S e, X ¢y
s ¥ o/.“
(c) Run 9 (d) Run 10
Fig. A10. Visualizing fitness diversity and phenotypic diversity of TGP-L — Generation 25 (cont.).
.
, o \
, : ‘ \).
! 9 \
2 \ ~ |
- / < |
b' N B
- ’ {] \
PN / o
/
g |
‘ o\
1 >) \ - w—
/ /
(a) Run 1 (b) Run 2

Fig. All. Visualizing fitness diversity and phenotypic diversity of SGP — Generation 25.

"

IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2018

() Run 9 (h) Run 10

Fig. A12. Visualizing fitness diversity and phenotypic diversity of SGP — Generation 25 (cont.).

10

IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2018

T So s
N)
o e o ‘
=) e / o—o @ e
Do d
S E ® o,
—" e o =
e . e
- 3 - 2z
) S
| \0 »0;0
&0 5 E
oo
- o =°2
e \
S
s
s
® ° o
a < 7 e
E E) -
° ~ ~ —Z AN
—~ ~ < \
I < \ - . .
=2 2 - . o® d
& -
=
oo o° 8% .o N
A\ N, o ° ®
55 - & oo /
5% gs @ °e=o” o° Te ® = 1
° ° o a s _— a
oaspSlS 506% O oin =0 Gee ’ o
S FD -~ oo 6. ° o0 ‘ - -~ ¥
LcS03% 00 _F° g 22 & o - - A
O Cas % = =TS © Gs § - e D9s 55 i @
TEi=o © ©» o et g A & o
= @ S e o R X e
o Pl 23 = |7
S msees® e o e
O T Ss o= e \ -
° &]
oo f _Ss ®
d &

1
1
1
1
1
o
11
? d
0

-
= = . o
= o - . a0 &
-~ - T o=e G e &
S s
~ ® 5 & ‘O w30, s
4 - eosE T
- /ooo oo < ;
— — \ oo & s
- L \0
- B
H oo — /.)
— s £ =
/ o
B)
e o e ~ =% 35 ° €s°
° O
° e % % N\ B » o 9% %2 4
P ° o
g a2 J e © ~ — - ~ o =4 °
- 5 & o -
Se¥ e ey 0 0° e ® & o SN
e \ L 00 & a O.wno,nwo.qu <
/1 - e ® S s b - o° -
P 72 \ e - o e el®
e GBS
® o & e ° co., \ & ° Eeo
. o ° e ® ° & RN
s p 2 e o s @ 05° ® So SIS~
vy o o 2 fom_ o -
o BO o © &2 Qe T e T T
> W= o 5 5, a@—© ST s D e
© e Qs> <& e ¢_% ' s © o R N = =
- O . = ol o & °, 8 cc005 o " .
o 3 S f. 5 oo O, <. p B T2Z ~
q0! cO> _~ o e (= 0.nﬁwo, 2 Cspe S OM =)
i 5 o > S 2 O S
or OC0,, Qi 0% <2 O <.
o) o SgyTCoR) RN O ©
oY=

(f) Run 6

(e) Run 5
Fig. A13. Visualizing fitness diversity and phenotypic diversity of MGP — Generation 25.

IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2018

00 j
‘.
1-?\\ 01 /D
l10 t 2,00
9 0
P 1‘1"11 ﬂyﬂjw 1%
1 41 6‘7111?\‘
4140, 0l N
o 1 1 Taran el
i 1111114 . 1\1 1
O ‘11“1:11 y 4 \1
1
1A g Mo "
’\/. 111“‘1 11/ 1 11 “1 1 1ot
T 1/ FELEY
1 4 1
1/ i"-g A il 1 ! 1‘|11 1
N J/
! A 1—1 K
/1 i~ \1/1 o oa o
1 \ 1 89 44
1 141 1
VoA gy T
19 141
1 1
11/1 ‘1‘,1
T
o
(a) Run 7
v
SR e,
11 a0
! 1"I1»‘1111\
£ e g
o
1
o4 o4
™
1 1 1
) S
1—1 A
4 o
t, ~. g 0 ! 09 @,
o U 11 . +-T~5 o
“4 "
§oaaltytle W o %,
& A 0@
i N .
A g o a
1'1‘1. e 11 B¢ o 2
R AR Wl o
g G ENe ~a) cy,au.
o
LA K Do) &
111M11 i 1 o o
{ ,
1 1 0 0,
a4 \‘ \ 0
0
(¢) Run 9

0
0
. 4= 14
? 0
DJ?‘J) l{an\u 0 ! /1 1\
O(190‘01 1\01‘ 1 11\)1‘1|1
1
00(3.0090")30/0 o ¥ \1‘“1—1 140 14'4‘;
OJUL:F‘D\E'UOUP) 10 ¥ , 111:“11 T
— oE’O‘r 0~g.4 1 01‘f1‘1‘1111 1
o 1-1 A 4T
050 g 0 11 i
5 898000 0 o 11 1
0 B ‘
0 0
¢ ¢ \0 0. % o
og
o
\u/olo 09
S g
a q 0
0 %Ay 0oL v
0»[0‘} 0 DD(‘ 03 060
0 ne c 0 P
0 0 U0(‘3«] I o
(b) Run 8
0/0\
% o0
‘
c"\ 08 %0 ®
n /
o"‘u 0°Q %o g0 pog, 00
24 20 % o 0o g
124% 00 “U -0, 00
fo4t Vo0, o N
A g d 0y, o=]
Yy @ 6o, ~° i
P2 o o (VA
1600 o> 0
1—@ 11 1‘ ~o0 1 100953'0 °u/
) 7 (0
SRR i p >
11 1 o b, (:0 % g I
i 1 1, . o 0 A a d
1.}‘1‘1 1/1' 1/” Y1 11,1
0 o /
11“ I|411 /
1 '11 11\11 089 @0
(d) Run 10

Fig. Al4. Visualizing fitness diversity and phenotypic diversity of MGP — Generation 25 (cont.).

Inputs: simulation scenario [
Output: the best evolved program A*
randomly initialise the population P < {Aq,..
set A* « null and fitness(A*) = o0
generation < 0
while generation < maxGenerations do

for all A; € P do

apply rule A; to the scenario [

P RN AHE LN

if fitness(A;) < fitness(A*) then
fitness(A*) < fitness(4;)
end if
end for

— = s =
w2

14 generation < generation + 1
15: end while
16: return A*

'7AS}

evaluate fitness(A;) < total weighted tardiness

P « apply reproduction, crossover, mutation to P

Fig. A15. TGP algorithm to evolve dispatching rules and routing rules.

IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2018

Inputs: simulation scenario 1
Output: the best evolved program A*

1: randomly initialise the population P < {Aq,...,Ag}

2: set A* < null and fitness(A*) = +oo

3: generation < 0

4: while generation < maxGenerations do

S: A0

6: for all A; € P do

7: apply rule A; to the scenario I

8: evaluate fitness(A;) < total weighted tardiness

9: if fitness(A;) < fitness(A*) then

10: A* — A;

11 fitness(A*) « fitness(4;)

12: end if

13: A AU (A, fitness(A;))

14: end for

15: P’ + apply reproduction, crossover, mutation to P (|P’| > |P|)
16: estimate fitness of A; € P’ with the nearest neighbor technique using the archive A
17: P < select programs with top estimate fitnesses in P’

18: generation < generation + 1

19: end while
20: return A*

Fig.

A16. SGP algorithm to evolve dispatching rules and routing rules.

