NHMRC Project Grants
Strategic Writing Guide for Grant Proposals

Why you should read this guide
Obtaining Project Grant funding is becoming increasingly difficult. In the last two years the success rate has dropped below 20%, first to 17% in 2013 and then to 15% in 2014. Around the cut-off mark, any objective difference between what gets funded and what doesn’t is marginal, so how you write and present your proposal is increasingly important. As well as being scientifically sound, a successful proposal will be well-argued and carefully-crafted.

This guide and its associated templates contain strategic advice for writing the Grant Proposal (i.e. PDF attachment) of your NHMRC Project Grant application, namely:
- Research Proposal
- References
- CI Time Commitment
- Team Quality & Capability statement
- CI Track Records
- Career Disruption.

(The optional sections on Priority Driven Young Investigator and Indigenous Research Excellence Criteria are not discussed in this guide because they are applicable to a few applicants only.)

There are templates for the Team Quality & Capability statement and CI Track Records.

The guide also contains strategic advice on matters such as project length, new investigators, translation, the assessment criteria, and targeting the most appropriate assessors and Grant Review Panel (GRP).

Note: anything the NHMRC has changed significantly since last year is marked in the guide and templates either in red text or with a vertical red line in the margin, thus:

Critical dates
21 January New Investigator eligibility forms (online) due to NHMRC
18 February Minimum data due in RGMS
18 March Applications close in RGMS
1-9 June and 22-30 June Rebuttal periods (approximate)

Further information
For further information about the Grant Proposal and all other aspects of your Project Grant application, please refer to the documentation available from the NHMRC website at http://www.nhmrc.gov.au/grants-funding/apply-funding/project-grants

Note: since the NHMRC documentation is now in a combination of html (online) and pdf formats, the cross-references in our guide are to sections (not pages), which works consistently for both formats.

© WriteMedia Pty Ltd 2015
This guide was written and produced by Tim Haydon.
Please direct comments, suggestions or enquiries to timhaydon@writemedia.com.au
Contents

1 Strategic advice ... 3
 1.1 Make your proposal cohere .. 3
 1.2 Objective of Project Grant scheme emphasizes ‘new knowledge’ ... 3
 1.3 The ‘how long should my project be?’ dilemma .. 3
 1.4 The New Investigator dilemma ... 4
 1.5 The Indigenous research dilemma ... 5
 1.6 The question of translation .. 5
 1.7 Target the most receptive assessors and Grant Review Panel (GRP) .. 6
 1.8 Understand and stay focused on the Assessment Criteria and Category Descriptors 7
 1.9 Feedback and revision ... 8
 1.10 Make the most of the months between submission and rebuttal ... 8

2 Formatting requirements and tips ... 9
 2.1 Requirements ... 9
 2.2 Tips .. 9

3 General writing tips .. 11
 3.1 Make your proposal reader-friendly .. 11
 3.2 Make it informative, even educational ... 12
 3.3 Make it interesting ... 12

4 Writing the Research Proposal ... 13
 4.1 Striking the right balance ... 13
 4.2 Writing responsively ... 13
 4.3 Overview (or Introduction or Executive Summary) ... 13
 4.4 Aims... 14
 4.5 Background ... 15
 4.6 Preliminary data / pilot studies ... 15
 4.7 Research Plan – methods and techniques to be used .. 16
 4.8 Timeline .. 18
 4.9 Outcomes & Significance .. 18

5 Writing the References (and in-text citations) .. 20
 5.1 Using RGMS ID numbers .. 20
 5.2 In-text citations .. 20
 5.3 Web links.. 21

6 Writing the CI Time Commitment to this proposal .. 22
 6.1 Include your hours per week ... 22
 6.2 Calculating % NHMRC Time .. 22
 6.3 What is a reasonable time commitment? ... 22

7 Writing the Team Quality & Capability statement and CI Track Records .. 23
 7.1 General points ... 23
 7.2 Writing the Team Quality & Capability statement (1 page) ... 26
 7.3 Writing the CI Track Records (2 pages each) .. 27

Appendix A. Assessment Criteria ... 28

Appendix B. Category Descriptors .. 30
1 Strategic advice

1.1 Make your proposal cohere
A Project Grant application is made up of many separate sections, but the reviewer is looking for coherence. Even minor inconsistencies between one section and another are noticed. And even though there are distinct assessment criteria, nothing is scored in isolation. Track record can influence scientific quality, especially feasibility. Scientific quality can influence significance – if it won’t work, it won’t have any impact. Innovation equates to risk, which can be offset by a strong, reassuring track record. And so on. Even the quality of the budget, though not in itself an assessment criterion, can influence the reviewer’s perceptions of the team’s professionalism, experience and competence, thereby affecting the score. In sum, every aspect of the proposal must be strong, and all aspects must work together as an integrated whole. To put it another way, the entire application must tell one clear, simple story.

1.2 Objective of Project Grant scheme emphasizes ‘new knowledge’
For many years the stated objective of the Project Grants scheme was as follows:

The Project Grants scheme aims to fund research leading to improved health of all Australians. To achieve this aim, the scheme provides support for investigator-initiated research relevant to health across all fields of research, from basic research through to research in clinical and community settings.

In 2014 it was revised to:

The objective of the Project Grants scheme is to support the creation of new knowledge by funding the best investigator-initiated research project plan of five years, or less, in any area relevant to human health ... A Project Grant application must outline a research proposal that describes the investigation of a new research idea/s.

1.1 Description and 1.2 Objectives, Project Grants Scheme-Specific Funding Rules 2015

Note the focus on ‘new knowledge’ and ‘new research idea/s’. In your application therefore you should emphasize the novelty of your project and its aims and how it will create new knowledge.

1.3 The ‘how long should my project be?’ dilemma
Some people have interpreted the words ‘research project plan of five years, or less’ in the scheme’s objective (above) as an encouragement to submit 5-year project plans. This is not the case, at least not in a simple sense. Overwhelmingly assessors criticize research plans where the timeline and/or budget appear excessive or gratuitous to the requirements of the aims and methods. If you have a 3-year project, don’t try to pad it out to 4 or 5 years. On the other hand, if your project will genuinely take 4 or 5 years to complete, don’t feel constrained to cut it back to 3 years in the belief that only shorter projects get funded.

Here are some recent trends to think about:

<table>
<thead>
<tr>
<th>Year</th>
<th>4-year grants funded</th>
<th>5-year grants funded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>65</td>
<td>28</td>
</tr>
<tr>
<td>2014</td>
<td>121</td>
<td>71</td>
</tr>
</tbody>
</table>
Although 2014 saw a dramatic increase in the number of 4- and 5-year projects funded, the number of 4- and 5-year projects submitted also increased, with the net result that the success rate for these longer projects was not substantially different from that for 3-year projects. This is shown in the following table. Interestingly, the table also illustrates that 2-year projects can get funded.

<table>
<thead>
<tr>
<th>Project duration</th>
<th>Number of applications</th>
<th>Funded</th>
<th>Success rate</th>
<th>Funding</th>
<th>Average funding per grant</th>
</tr>
</thead>
<tbody>
<tr>
<td>One year</td>
<td>9</td>
<td>0</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two years</td>
<td>137</td>
<td>16</td>
<td>11.7%</td>
<td>$5,487,766</td>
<td>$342,985</td>
</tr>
<tr>
<td>Three years</td>
<td>2304</td>
<td>345</td>
<td>15.0%</td>
<td>$203,145,360</td>
<td>$588,827</td>
</tr>
<tr>
<td>Four years</td>
<td>768</td>
<td>121</td>
<td>15.8%</td>
<td>$107,357,041</td>
<td>$887,248</td>
</tr>
<tr>
<td>Five years</td>
<td>482</td>
<td>71</td>
<td>14.7%</td>
<td>$103,992,786</td>
<td>$1,464,687</td>
</tr>
<tr>
<td>Total</td>
<td>3700</td>
<td>553</td>
<td>14.9%</td>
<td>$419,982,953</td>
<td>$759,463</td>
</tr>
</tbody>
</table>

As a very general guide, clinical and public health projects are more likely to succeed with 5-year applications than are basic science applications. This is because they often have a longitudinal component that naturally lends itself to a longer grant. Basic science applications usually don’t have this, and 5-year basic science proposals can end up sounding like lots of small projects put together, which adds significantly to risk. For a 5-year basic science application to be successful, it must be coherent and focused, and it must also avoid the trap of having dependent aims, which can prove difficult over 5 years.

1.4 The New Investigator dilemma

Whether to submit a proposal as a New Investigator team (see below for eligibility), or whether to bring more experienced CIs on board and submit a standard Project Grant, can be a real quandary. The advantage of going as a New Investigator team is that the funding cut-off for these applications is lower – only slightly – than for standard Project Grants. The disadvantage is that you are competing directly against other teams of CIs who have more experience and stronger track records.

The NHMRC says that it ‘seeks to ensure that the success rate for NI applicants is approximately the same as that for standard Project Grant applications’ (5.1.3 New Investigators, Project Grants Scheme-Specific Funding Rules 2015). This is what’s happened over the last 6 years:

In addition, funding awarded to New Investigator proposals as a proportion of funding awarded to all Project Grants has hovered around 8% over the same period.
In 2014, the funding cut-off for New Investigator applications was around 5.5, compared to around 5.6 or 5.7 for standard Project Grant applications. These results are all so close that there is no easy answer to the New Investigator dilemma. Every case has to be assessed on its merits.

1.4.1 New Investigator eligibility
To qualify for New Investigator status, all CIs on an application must meet the following criteria at the time of submission:

- be less than 10 years from the date of the letter advising them that their doctoral thesis was passed, unless career disruptions exist; and
- not have been a named CI (or equivalent) on a funded NHMRC Project Grant and/or an ARC Discovery Grant; and
- not have been a named CI (or equivalent) on a funded research grant from any other agency listed on the Australian Competitive Grants Register or an equivalent international funding agency totaling $AUD 250,000 or more. Note the $250 000 limit is not cumulative.

Important: applicants who wish to apply as a New Investigator must seek confirmation of their eligibility by 21 January 2015. See 5.1.4 New Investigator Confirmation in Project Grants Scheme-Specific Funding Rules 2015.

1.5 The Indigenous research dilemma
To qualify as Aboriginal and/or Torres Strait Islander health research, at least 20% of the research effort and/or capacity building must relate to Aboriginal and/or Torres Strait Islander health.

6.2 Health Research Involving Aboriginal and Torres Strait Islander Peoples (NHMRC Funding Rules 2015)

If the Indigenous focus of your proposal is well over or well under the 20%, there is no dilemma. But if it’s hovering around the 20% mark, there is a choice to be made. What are the pros and cons?

From a strategic perspective, the advantage of having your proposal qualify as Aboriginal and/or Torres Strait Islander health research is that the success rate is higher. In 2014, 18.9% of Indigenous Research Project Grants were funded, compared to 14.9% of standard Project Grants.

The disadvantage is that the application process becomes more onerous. In addition to the standard assessment criteria, your proposal will have to address the Indigenous Research Excellence Criteria: Community engagement; Benefit; Sustainability and transferability; and Building capability. For details, see 6.2 Health Research Involving Aboriginal and Torres Strait Islander Peoples in NHMRC Funding Rules 2015.

1.6 The question of translation
Translation is a vexed issue. It can mean different things to different panels, and it can mean different things to different people on the same panel. On some panels it is important, on others not. Here are a few high-level observations:

- The more clinicians and/or public health researchers there are on a panel, the more important it will be to demonstrate that the project is translational or translatable.
- For basic science projects it might be appropriate to demonstrate that translational considerations have been taken into account in shaping the type of work to be done – e.g. testing drugs that are easily delivered, cheap or widely available; focusing on proteins that have a specific function or can be easily targeted; dealing with questions that clinicians or drug developers want answers to.
- ‘Tacking on’ a translational aim or component at the end of a project won’t cut it. It must be integral to the project.
- Merely claiming that you will translate the outcomes of your project won’t cut it either. To be convincing, you will need to demonstrate that you have a well-considered plan for translation.
- The team must have the expertise and experience to deliver on translational aims or components. Reviewers will look at track records to determine, for example, whether CIs are members of peak...
bodies, on committees, or have written guidelines before. If an economic analysis is proposed, reviewers will want to know that a health economist has been consulted or is on the team.

Here are some recent assessor comments apropos of translation:

- How will the results be translated? For example, will the team develop guidelines and recommendations for specific groups, and how will be they be disseminated? A clear plan would appear appropriate.
- Some early involvement from decision-makers could benefit translation.
- The proposal is strengthened by the inclusion of a process evaluation and an economic analysis, which will provide vital information on service delivery.
- The intervention’s cost decreases the likelihood of widespread use.
- The CIs will disseminate the results and ‘make recommendations’. Yet much excellent research fails to reach the end user due to a lack of change implementation. What will you do to ensure changes are put in place so this does not fall into an ‘interesting but too hard’ basket?

1.7 Target the most receptive assessors and Grant Review Panel (GRP)

Who will judge your proposal? Given that certain external assessors and GRPs may be more interested in, knowledgeable about and receptive to your proposal than others – some GRPs may be less competitive than others too – it is critical to steer your proposal to where it is likely to get the best score. To do this, you need to choose carefully what you enter in the following fields (which appear under A-RC: Research Classification in RGMS) and how you write the Synopsis, because all this information may be used to determine which external assessors and GRP your proposal is assigned to:

- guide to peer review areas – this is the primary determinant
- broad research area
- field of research
- field of research subcategory (methods)
- research keywords/phrases

While there is no guarantee that your proposal will go exactly where you want it to, it is certainly worth doing all you can to steer it in the right direction.

Note: all the information pertinent to assigning your proposal to assessors and GRP is shown in the Summary snapshot report. Print this report to review your targeting strategy.

1.7.1 Writing the Synopsis (2000 characters)

The Synopsis may also be used to assign your proposal to external assessors and GRP. It ‘may also be considered in the assessment process’, which presumably means it may contribute to your score. You should therefore write it with both these purposes in mind. The instructions are straightforward:

- The synopsis should accurately, and briefly, summarise the research proposal.

5.3 A-PA: Application Properties (Advice & Instructions to Applicants 2015)

Essentially, then, the Synopsis is an abstract with a touch of salesmanship.

But be careful to keep the emphasis of the Synopsis consistent with the information you’ve provided in the fields listed in 4.1; otherwise it might undermine all that careful targeting. For example, if your cardiovascular project includes a small proof-of-concept clinical trial and you don’t want it to go the Clinical Trials GRP, make sure you don’t put ‘clinical trial’ front and centre of the Synopsis.

Note: you are now also required to write a Plain English Summary of your project, but this is entirely separate to the Synopsis (see 5.3 A-PA: Application Properties, NHMRC Advice & Instructions to Applicants 2015).
1.7.2 **Nominating external assessors**

You are also given the opportunity to nominate up to two national and two international assessors whom you would like to review your research proposal (see 4.6 B-NPA: Nomination of Possible Assessors, *Project Grant Scheme-Specific Advice & Instructions 2015*). We recommend taking this option, but make sure your nominees don’t have a conflict of interest with you (see 4.3.1 What is a Conflict of Interest? in *Guide to NHMRC Peer Review 2015*). The NHMRC is diligent about checking this.

1.7.3 **Excluding external assessors**

Finally, you can nominate one person whom you would not like to assess your proposal. This can be on the grounds that there is a conflict of interest or that you believe they ‘would be incapable of giving a fair assessment due to unreasonable bias’ (see 4.7 B-NA: Nomination of a Non Assessor, *Project Grant Scheme-Specific Advice & Instructions 2015*).

1.8 **Understand and stay focused on the Assessment Criteria and Category Descriptors**

Make sure you have a thorough grasp of the three **Assessment Criteria**:
- Scientific Quality (50%)
- Significance of the expected outcomes and/or Innovation of the concept (25%)
- Team Quality and Capability relevant to the application and relative to opportunity (25%)

For a complete description of these criteria see *Appendix A. Assessment Criteria*.

Against each criterion your proposal will be given a score from 1 to 7, based on levels of achievement defined by **Category Descriptors**. To have any chance of being funded, your proposal will need to score a combined total of well above 5 – so aim for 6 – and GRPs are constantly reminded to use the Category Descriptors to determine scores. You should therefore familiarize yourself with them thoroughly – see *Appendix B. Category Descriptors* for a complete description.

1.8.1 **Scientific Quality**

Not only is Scientific Quality worth more than the other assessment criteria as a proportion of the overall score, there is a sense in which it trumps them in importance anyway. That is, if the research plan is flawed in any but the most trivial ways, it is very unlikely that the proposal will be funded, regardless of its significance, innovation and team.

1.8.2 **Significance and/or Innovation?**

Applications need not be rated on both significance and innovation. Truly innovative ideas and research may not reveal their significance until sometime in the future (this is the case for many Nobel Prize winning discoveries). Similarly research of the highest significance such as important randomised clinical trials or public health intervention studies may use ‘tried and true’ methods only, yet be of immense significance to health.

Attachment B: Guidance for applicants to address the project grants assessment criteria, Project Grants Scheme-Specific Funding Rules 2015

Most proposals have elements of significance and innovation, although applicants can’t always see it. Sometimes it’s a case of stepping back and looking at your project with fresh eyes. Sometimes it comes down to the way you describe the project. We would encourage you, provided it’s within the bounds of credibility, to find ways to demonstrate that your project is both significant and innovative. Having said that, reviewers tend to view significance as more important than innovation.

1.8.3 **Significance**

The NHMRC guidelines explicitly state that the ‘significance of the study is not a measure of the prevalence/incidence of the health issue (e.g. cancer versus sudden infant death syndrome)’. Rather, significance refers to whether the project’s outcomes will advance knowledge and/or have an impact on the health issue and/or generate interest from other researchers, conference organisers, journals,
community groups, and policy makers (see Attachment B - Guidance for applicants to address the project grants assessment criteria in Project Grants Scheme-Specific Funding Rules 2015). Nevertheless, many reviewers continue to think of significance in terms of the scale of the health problem. If you are working on a rare disease, you may need to work harder to develop a strong rationale for the project.

1.8.4 Innovation
The NHMRC has also been more explicit about innovation this round, with discrete bullet points describing what constitutes innovation in both the Assessment Criteria and Category Descriptors. Essentially, it is understood in terms of innovative concepts and/or innovative approaches. But even if your project is not introducing advances in concept or using new approaches, it will be producing or contributing to new outcomes (knowledge, applications, technologies, policies), so you can always appeal to this aspect of innovation.

Innovation doesn’t necessarily mean ‘complex’. Innovative solutions can be very simple and low cost.

For some readers, innovation will equate to ‘risk’. So you need to balance innovation with feasibility: the more innovative the project, the more persuasively you will need to argue that it is feasible.

1.9 Feedback and revision
After drafting your proposal, get feedback from non-experts as well as experts. Non-experts sometimes notice errors or omissions that experts have become ‘blind’ to through over-familiarity. Also, try to consider it from a reviewer’s perspective: that is, in terms of the Assessment Criteria and Category Descriptors, and whether it represents value for money. If your proposal isn’t persuasive and isn’t ticking all the right boxes, revise it.

1.10 Make the most of the months between submission and rebuttal
Ideally you will include in the Grant Proposal (submitted in March) the publications as well as any unpublished, preliminary data that are necessary to providing the strongest possible rationale for your proposed project. Having said that, bear in mind that between March and June/July, when you’ll write your rebuttal, you have the opportunity to publish more papers and generate more preliminary data, which you may include in the rebuttal. So take full advantage of this time.
2 Formatting requirements and tips

2.1 Requirements
The NHMRC has strict requirements about fonts, margins, etc. If you don’t comply, your application may be ruled ineligible. For full details, see 10.3 Content and Format Requirements in *NHMRC Funding Rules 2015*.

2.1.1 You must use the Word template
A Word template for the Grant Proposal can be downloaded from the NHMRC website. This year it is obligatory to use it. In this template the main formatting requirements (e.g. margins, headers and footers) are preset. You will, however, still need to format and label any diagrams, tables, graphs and images manually; and the instructions for these have been updated:

Diagrams, Graphics and Images
Colour diagrams, graphics and images may be included. However, you should keep in mind that the electronic file may be printed in black-and-white for distribution to the reviewing panel and there may be some loss of definition and colour in the images. *Text that is part of an image is exempt from formatting (font and size) requirements.*

Labelling Graphs and Images
Labelling of graphs and images should be in a font that is able to be read by assessors.
Description and/or legends of all graphs and images must be no smaller than 12 point Times New Roman.
Text that is part of an image is exempt from formatting (font and size) requirements.

Tables
Tabulated information containing text is not considered to be an image or diagram. Therefore, text within tables must be no smaller than 12 point Times New Roman.

10.3 Grant Proposal, *NHMRC Funding Rules 2015*

2.1.2 Avoid referencing other documentation and/or web links
The NHMRC is strict on these points:

The application should contain all information necessary for assessment without the need for further written or oral explanation or reference to additional documentation... Applicants must not include in any part of their application:

- links to external websites, apart from references to published or peer reviewed journal articles that are only available online. Where links are included, provide the URL in full...

10.3 Content and Format Requirements, *NHMRC Funding Rules 2015*

2.2 Tips

2.2.1 Make diagrams and graphs legible and effective
The NHMRC warns that when your proposal is printed and photocopied for the assessors and panel, it may end up in black-and-white and there will probably be some loss of quality. Also, assessors often complain about images being unreadable, for various reasons. Therefore, if you include images, diagrams or graphs of any kind, make sure (1) they are not too small or fiddly, (2) they are clearly named and labelled, and (3) they will not be rendered ineffectual if translated from colour to black-and-white.

2.2.2 Differentiate between headings and sub-headings
Most proposals require several *levels* of heading, but it’s not always easy to distinguish one level from another. For the reader this can be confusing. We therefore recommend either of these two approaches:
<table>
<thead>
<tr>
<th>Visually distinct</th>
<th>Legal numbering system</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKGROUND [level 1]</td>
<td>1 Background [level 1]</td>
</tr>
<tr>
<td>Subheading [level 2]</td>
<td>1.1 Subheading [level 2]</td>
</tr>
<tr>
<td>Sub-subheading [level 3]</td>
<td>1.1.1 Sub-subheading [level 3]</td>
</tr>
</tbody>
</table>

2.2.3 Aim for clear, uncluttered presentation

If you fill up every available millimetre of space, cramming in as much information as possible, your proposal will be difficult to read and may give the impression of an inability to discern what’s important from what’s not, even of desperation or under-confidence. Try, then, to incorporate plenty of white space, and break up the text using subheadings, diagrams, graphs, flow charts, tables, and bullet points for lists. Above all, avoid pages of solid, unbroken text with no spaces between paragraphs – or no paragraphs at all!
3 General writing tips

3.1 Make your proposal reader-friendly
Communicating is work, and someone has to do it. If you don’t put in the effort to make your research proposal easy to read, then you are in effect ‘passing the buck’ to your reviewers, who may have neither the time nor the energy to unravel what you are trying to say, and may also be irritated by the imposition. So here are a few tips to make your research proposal reader-friendly.

3.1.1 Structure information for several ‘levels of reading’
Your proposal will be read by people with various levels of ‘commitment’ to it. Some, such as your primary and secondary spokespersons (SP1 and SP2) on the panel, will read your proposal in great detail. Other members of the panel may only have time to ‘skim read’ it.

You can structure information to suit all these readers, by organising it into subsections that follow a logical sequence and by using carefully chosen subheadings and topic sentences (the first sentence in a paragraph). A reader in a hurry will be able to grasp the main points of your proposal merely by looking at the subheadings. Topic sentences will then encapsulate the next level of detail.

Here’s an example:

[subheading] Hip fractures are a major problem for older people and the community
[topic sentence] Improving strategies for hip fracture rehabilitation among older people is an urgent public health challenge due to the increasing proportion of older people in the population and the increasing incidence of falls and fractures. ... [and so on]

Many people don’t fully recover after a hip fracture
“Some loss of function is expected” after hip fracture (2007 BMJ review article [5]). ...

Poor outcomes persist after rehabilitation programs
Unfortunately, poor physical outcomes can occur even for those who have undergone rehabilitation.

Previous trials have found effects of exercise on functioning but not falls or hospital re-admission after hip fracture
A Cochrane review on exercise after hip fracture, co-authored by CIA (DL17), included six randomised trials conducted after participants had returned home from hospital. ...

Self-management training can prevent falls in older people
Systematic reviews have found self-management programs to be beneficial in the management of a number of chronic diseases [17] and such programs are now recommended by governments world-wide (e.g., in Australia, United Kingdom and the United States). ...

We propose an exercise self-management training program for people after hip fracture
We suggest that ongoing exercise is necessary to improve outcomes after hip fracture and that an optimal way to achieve this is with a self-management training program. ...

3.1.2 Use concepts and language appropriate to readers’ levels of knowledge
As well as having different levels of ‘commitment’, the readers of your proposal will have different levels of knowledge about your research area. External assessors are likely to have very specialist knowledge. Members of the panel may have only a general knowledge. This is partly because panel members with specialist knowledge frequently find themselves in a ‘conflict of interest’ and are unable to review a proposal they know a great deal about. It is also partly because the composition of panels can be mixed, leading to quite considerable disparities in knowledge about any given topic.

In writing your proposal you should try to cater to all your prospective readers – the experts as well as the ‘lowest common denominator’ on the panel – both in terms of the concepts and the language you use. One way to do this is by adopting the ‘hourglass’ approach:
Use ‘everyday’ ideas and language for the opening, so as to capture the interest and attention of all readers. Begin broadly, with what you’re sure is known to everyone, then lead into greater complexity step-by-step.

Start introducing technical details, but make sure you also explain them for the non-expert.

The middle section is for the expert assessor so denser technical language and concepts are fine.

Start shifting back to ‘everyday’ ideas and language, especially with Significance, again so that you appeal to all readers.

The ‘hourglass’ approach means that the Research Plan (methods and techniques), which is technical and detailed, is neatly situated within a broader framework that is intelligible to all and of general appeal. Even if non-expert readers have to rely on the advice of expert assessors regarding the methods and techniques, they are at least able to judge for themselves (at a non-technical level) the proposal’s significance – both in terms of the importance of the problem/question being addressed and of the anticipated impact of the research – as well as its innovativeness.

3.2 Make it informative, even educational

Some external assessors and many GRP members will not have expertise in your topic. Don’t be afraid to teach them about it, at least on the first page and in the Background. Several reviewers have indicated that they enjoy learning about a new area.

3.3 Make it interesting

Applicants’ enthusiasm and excitement for their research projects often get lost in the process of drafting and redrafting these proposals. So, once you’ve reached a point where the content is substantially correct, take a break for a few days, then read back over the proposal and reinvigorate your prose, especially on the first page. Make it lively and interesting – an enjoyable read. Find adjectives and verbs that are fresh and have an impact – get that thesaurus off the shelf! – rather than resorting to what is well-worn and clichéd. For example, ‘This result exceeded all expectations’ rather than ‘This was a very positive outcome’. Or ‘Our research may unlock the door to...’ rather than ‘Our research may provide appropriate and relevant information to...’.

At times reading this application felt like a hard slog and it should feel like an interesting and engaging read.

Assessor comment
4 Writing the Research Proposal

This must be no more than 9 pages and must comprise the following sections:

- Aims
- Background
- Research Plan (methods and techniques to be used)
- Timeline
- Outcomes and Significance.

We also suggest that you begin with an Overview (see 4.1) and include a dedicated section on Preliminary Data (see 4.4) between the Background and the Research Plan.

4.1 Striking the right balance

Sometimes applicants write so much in the Background that there are too few pages left for the Research Plan. This generally means the Research Plan will lack crucial detail and will be open to serious criticism. Furthermore, it is the Research Plan, not the Background, that earns you the score for Scientific Quality.

Unfortunately, there is no one-size fits-all advice for what the optimum balance might be. Every project is different: some require more justification than others (i.e. more Background); others involve many and/or complex methods and techniques that require a lot of explanation. But in either case, it might be sensible to think in terms of adjusting the Background to fit the Research Plan, rather than the other way around.

4.2 Writing responsively

Having done your best to target the most appropriate external assessors and GRP (see 1.7), you should keep these reviewers in mind as you write. You are, in a sense, in dialogue with them. Ask yourself what the reviewers might be thinking, what the reviewers might need convincing of, what the reviewers might have trouble understanding. How could your statements and claims be understood or construed? There is often more than one way. If there is any likelihood of confusion, ambiguity or criticism, then clarify or explain.

4.3 Overview (or Introduction or Executive Summary)

Leaping straight into the project’s Aims can be like throwing your readers in at the deep end. Without some prefatory context, not only may some readers not fully comprehend the Aims, they may not grasp what’s significant or innovative about them. An Overview, though not officially required, offers a non-technical entry point for all readers, regardless of their levels of expertise. It can give them a sense of how your project fits into the ‘big picture’, and it can provide a succinct and compelling rationale for the project.

Apparantly some GRP spokespersons use the overview to introduce the application at the panel meeting.

4.3.1 How long should it be?

This depends on how much or how little your readers are likely to know about the issue, which informs how much detail is needed to set the scene, as well as on the complexity of the argument required to (succinctly) justify the project. The overview could therefore be a paragraph or a page. We usually advise trying to fit the Overview and Aims (including hypotheses) onto the first page, only because reviewers tend to expect them here (by convention) and because having them together on the opening page provides a neat snapshot of the project, which is helpful to readers in a hurry. But perhaps the best guide to length is this: the purpose of the Overview is to give readers enough information so that when they get to the Aims, they can fully understand them and appreciate why they are important.

4.3.2 Logic and structure

However long your overview is, its logic and structure should be along these lines:

1. Identify the health/medical/scientific problem. Draw attention to such things as scale of health impact; impact on the individual (quality of life) and on families and carers; impact on the healthcare
system; cost to the national economy; intractability of the scientific conundrum. Make the case, if you can do so convincingly, that the problem is pressing and demands urgent attention; if applicable, mention calls to action by international or national health/medical bodies (WHO, AMA, etc.). Also, if the project addresses one of the NHMRC’s priority areas or special initiatives, you can mention that as well. In this step you can therefore emphasize the importance of the problem being addressed.

2. **Explain the gap in knowledge/practice/policy.** Give a brief snapshot of what has already been done to address the problem and why it hasn’t worked or why the evidence is incomplete or why the problem continues to present a challenge to medical science or clinical practice or health policy, and what the consequent gap in knowledge/practice/policy is. People often skip this step, launching immediately into a description of their own project. But this step can work to your advantage, because it lets you demonstrate (a) that you’re well aware of the various approaches taken to addressing the health/medical/scientific problem, (b) what their limitations or drawbacks are, and therefore (c) that a new approach (such as yours) is required. It can also implicitly convey a sense of the impact on the field/discipline that your project is likely to have – i.e. if you manage to resolve a problem that no one else has, how much will your project advance knowledge!

3. **Explain how and why your project will address that gap.** Very briefly summarize your project, emphasizing **innovation** (novel concepts, approach, methods, data, etc.) and **feasibility** (strong preliminary data, successful pilot study, the right team, etc.). Be explicit about how you expect the project’s outcomes will advance the field of research, change practice, change policy, improve health, reduce healthcare costs, etc. – be sure to draw attention to the **significance** of these expected outcomes. If your project has overarching objectives (as well as the specific aims you will list under Aims), or if it represents one stage or element in your long-term program of research, you could mention these points here too.

This three-step argument may also form the logical basis of your Background section.

4.4 Aims

Describe the specific aims of the project, including a clear statement of hypotheses to be tested.

4.3 B-PR: Grant Proposal, Project Grants Scheme-Specific Advice & Instructions 2015

Having set the scene in the Overview, your project’s Aims should now appear self-evidently important and interesting – a worthwhile, innovative, even long overdue, response to an important problem. The Aims should not come as a complete surprise to the reader. Sometimes there is a large leap in complexity, or level of specificity, between the Overview and the Aims, which makes it very difficult for the reader to follow the line of argument. For example, if the Overview describes the health burden and broad risk factors of type 2 diabetes, the reader may get a little lost if Aim 1 is to characterize genetic mutations in protein X. So try to ensure there is an easy-to-follow, logical flow between the Overview and Aims.

Write the Aims clearly and with definite outcomes in mind. And make sure the wording of the Aims is **exactly the same** in the Research Plan; disparities are confusing, even misleading.

Beware Aims which promise merely to ‘explore’ (and similar) – reviewers tend to view these as ‘fishing expeditions’. Interesting and/or novel Aims are obviously a big plus. It also helps if the Aims anticipate and mirror the subsequent Research Plan. If there are three Aims, for example, the reader will expect three parts to the Research Plan.

4.4.1 Is a hypothesis necessary?

The range of projects submitted for these grants is enormous, from basic science to health services research to medical ethics. Whether or not every project should be proposing and testing a hypothesis (or hypotheses) is therefore a moot point. While a hypothesis is no doubt desirable, the best advice we can give is that you should try to be consistent with whatever is the norm for your field.
4.4.2 Do the aims address the hypothesis?
Surprisingly, a common criticism in assessor reports is that the aims don’t actually address the hypothesis (or hypotheses) – i.e. they will not generate the information required to answer the question(s) being asked. We recommend you seek feedback from other researchers about whether the aims will in fact address the hypothesis and about whether the hypothesis is asking the ‘right’ (most interesting and important) question in the first place.

4.4.3 Avoid dependent aims
If Aim 2 relies on successful outcomes from Aim 1, and if Aim 1 is not successful, the project will come to a premature end. In this situation, Aim 2 is known as a ‘dependent’ aim. (Equally Aim 3 could be dependent on Aim 2; Aim 4 on Aim 3; etc.) It is highly unlikely that a project with dependent aims will be funded; the risk that the whole project will flounder if one Aim doesn’t achieve its desired outcome, is too great.

4.4.4 Summary so far: importance of the opening page
The Overview and Aims should appear on the first page; they may constitute the entire first page but should probably not go over. This first page is critical. A number of researchers who have been very successful with NHMRC Project Grants tell us that they spend hours, if not days, drafting and redrafting the first page in order to achieve maximum impact. People who’ve been on panels also confirm the importance of the first page: unless they are SP1 or SP2 on your application, they are unlikely to read anything but the first page.

4.5 Background
Provide a rationale for the project.

4.3 B-PR: Grant Proposal (Project Grants Scheme-Specific Advice & Instructions 2015)
Think of the Background both as an argument that provides a strong rationale for the Research Plan that follows and as a story that brings readers up to speed on the key issues and maintains their interest. Conceptually it should discuss in detail the three key points covered briefly in your Overview:
1. Identify the health/medical/scientific problem.
2. Explain the gap in knowledge/practice/policy.
3. Explain how and why your project will address that gap.

4.5.1 Subheadings
Carefully chosen subheadings are especially useful in the Background. By ‘carefully chosen’ we mean subheadings that succinctly convey important information in their own right and are therefore easy to skim-read. Each subheading might conform to a step in your argument. See the example in 3.1.1 above.

4.5.2 What to leave in, what to leave out
If the Background digresses or includes superfluous details, the purpose of your proposed research project can get ‘lost’ amidst the excess of information. The Background should be neither textbook nor comprehensive literature review. Instead, everything in it should serve a single cause: to make a persuasive case for your Aims and Research Plan. To avoid irrelevant detail, ask of every paragraph, every sentence, ‘Is it advancing the case for my proposal?’

4.6 Preliminary data / pilot studies
These days insufficient preliminary data will ‘kill’ a proposal. Reviewers can think of many reasons why this or that aspect of your proposed project may not work. But show them you have already done it, and such objections are difficult to sustain. In other words, concerns about the feasibility of lab techniques, the likely success of recruitment, the acceptability of an intervention, initial indications of efficacy and so on, are best assuaged by preliminary data and/or a pilot study. Some reviewers have even noted that preliminary data for each aim is advantageous, but not all reviewers expect this.
Rather than bury your critical preliminary data somewhere in the Background or Research Plan, we recommend that you create a separate section, with a major heading, after the Background and before the Research Plan. This way it cannot be overlooked by a reader in a hurry.

If you can’t present preliminary/pilot data now, remember you will have an opportunity to present it a few months later in your rebuttal. This is not ideal of course, but it is better than no preliminary/pilot data at all.

4.6.1 Too much preliminary work?

If you have done a lot of preliminary work, and especially if some of it has been published, you have to be careful not to invite the criticism that you have more or less achieved your research aims already. Projects that offer only incremental advances on existing research are unlikely to be funded. You may need to think carefully about just how much preliminary work you present in your Grant Proposal.

4.6.2 Summary so far: a strong rationale

With the exception of the Aims, all the information leading up to the Research Plan should serve the single purpose of providing a persuasive rationale for that Research Plan. By the time your readers get to the Research Plan, they should be well primed for it, expecting it to offer a logical, necessary and desirable response to the problem, question or state of affairs you’ve described.

4.7 Research Plan – methods and techniques to be used

This year the NHMRC has been more prescriptive about the kinds of information that should be included in the research plan. Text in red shows what is new or rephrased:

Outline the research plan in detail, including the following where appropriate:

- Detailed description of the experiment design
- Techniques to be used
- Details and justification of controls
- Details for appropriate blinding
- Strategies for randomization and/or stratification
- Justification of sample-size, including power calculation
- Justification of statistical methods
- Strategies to compensate for the effects of sex-differences, different animal strains and/or different end-points
- Ethical implications the research may have
- Community involvement and/or plans to transfer knowledge to stakeholders or into practice; and
- Expected outcomes of the research project.

4.3 B-PR: Grant Proposal, Project Grants Scheme-Specific Advice & Instructions 2015

4.7.1 Alignment: Aims → Methods → Outcomes

A well-written Research Plan will make it easy for the reader to see how the experimental design, methods and techniques will serve the Aims and deliver the Outcomes. The Research Plan should therefore clearly map onto the Aims. For example, if there are three Aims, the reader will probably expect three parts to the Research Plan. Begin each part by restating the Aim; it doesn’t matter that this repeats the Aims given on the first page; it helps readers understand exactly how the methods align with, and serve, the Aims.

4.7.2 Outcomes as you go

To address ‘expected outcomes of the research project’, you might consider concluding each Aim (or each part of your work plan) with a subheading like ‘Expected outcomes’ in which you briefly summarize the anticipated results or outcomes for that piece of work. This explicitly links methods to outcomes, and
neatly encapsulates for the reader what the Aim is intended to achieve. (For Outcomes & Significance at the end, you can discuss the expected outcomes of the project as a whole; see 4.8.)

4.7.3 Sound and thorough experimental design
Many assessors’ criticisms could be averted if more information, or more precise information, were provided in the Research Plan. This is particularly common with things like recruitment, retention, statistical methods and power calculations. It may be that you know exactly what you’re doing but have forgotten to mention it. But assessors won’t know that; they’ll just see a gap or flaw in your plan.

Providing sufficient, precise information will also reduce the number of questions you have to answer at rebuttal time. Since you are allowed only two pages for your rebuttal, a spate of questions can mean (a) you don’t have room to respond to them all, or (b) you do manage to respond to them all but in a very cursory and unsatisfactory manner.

To ensure your Research Plan is rigorous and comprehensive, you need to allow yourself enough space (see 4.1). You should also avail yourself of publicly available guidelines and checklists for project design, e.g. the CONSORT Statement for randomised clinical trials. We also recommend that you seek feedback from other researchers on the experimental design.

4.7.4 Most appropriate experimental design
Many assessors’ comments challenge the approach researchers take to address their Aims and Hypothesis – e.g. Are the research questions being answered in the right way? Is it the most appropriate model? Will the experiments actually provide the required information? If alternative approaches are possible, consider whether or not you have adequately justified the approach you are taking and the methods you are using. It’s your job to convince all your reviewers that you are going about the project in the best possible way.

4.7.5 Statistics and power calculations
Statistics and power calculations are critical for clinical trials and public health applications. Getting them wrong will ‘kill’ an application. In part this is because they have an add-on effect that you can’t address in a rebuttal: power calculation determines sample size, which in turn determines recruitment, timeline and budget.

Make sure you have a statistician on the team in some capacity (CI, AI, personnel). At the very least, make it clear that you have consulted a statistician.

Perhaps in some basic science applications, too, scientific quality might be strengthened if a power analysis were provided? At the very least, it is important to justify such things as why an experiment needs to be repeated a certain number of times, or why a certain number of animals needs to be used.

4.7.6 Controls
It is a common criticism that the control arm(s) of a project is not adequately explained and justified. For example, saying that the control arm represents ‘usual care’, and saying nothing more, can set off a spate of comments about how you define ‘usual care’ in the setting in question, whether ‘usual care’ even exists in that setting (given lack of homogeneity in clinical practice), and so on. Such concerns explain why the guidelines now prompt you to provide ‘Details and justification of controls’.

4.7.7 Dealing with weaknesses
Don’t try to hide weaknesses or avoid difficult questions (unless you’re absolutely sure that not a single reviewer will notice!). It’s better to raise the issue yourself, to show that you’re perfectly aware of it, and then to neutralize potential criticisms by explaining how you will deal with the issue should it arise, for example by demonstrating you have a contingency plan. You might think of this as a ‘pre-emptive strike’.
4.7.8 Feasibility

Feasibility is a facet of ‘scientific quality’ and has become an increasingly critical point of differentiation between successful and unsuccessful applications. To establish the feasibility of your Research Plan you must convince reviewers that (a) your experiments or studies will successfully address the stated hypothesis or research objectives, and (b) what you are proposing is achievable – by your team, using the proposed methodology, and within the timeframe. In addition to providing technical scientific reasons for the approach you’re taking, you can also do the following:

- demonstrate feasibility by reference to any preliminary work you have done (see 4.5 Preliminary data / pilot studies)
- whenever you mention a method or technique you plan to use (unless it’s absolutely standard practice), be explicit about your team’s ability to do it; ideally cite one of the CI’s publications in which the method or technique has already been used successfully
- summarize key aspects of feasibility in a dedicated ‘Feasibility’ subsection; this is probably best placed at the end of the Research Plan.

Support for the project’s feasibility will also derive from the Team Quality & Capability statement and CI Track Records (see section 7).

4.8 Timeline

Provide a detailed timeline for the expected outcomes of the research proposal along with justification for the duration requested.

4.3 B-PR: Grant Proposal, Project Grants Scheme-Specific Advice & Instructions 2015

Try to offer as much detail as space allows. For example, rather than simply indicate that Aim 1 will be completed by the end of year 2, indicate when each component of Aim 1 will be undertaken and completed. (Note that ‘expected outcomes’ does not mean the expected impact of the project.)

The timeline should align with the proposal’s budget as well as its Aims. For example, if in the budget you request a PSP3 for years 1 and 2 of the project to complete Aim 1, then the timeline needs to show that Aim 1 will be complete by the end of year 2.

Don’t forget to include a justification for the number of years for which you are requesting funding.

4.9 Outcomes & Significance

Describe the importance of the problem to be researched, the planned outcome of the research plan, and the potential significance of the research.

4.3 B-PR: Grant Proposal, Project Grants Scheme-Specific Advice & Instructions 2015

The Outcomes & Significance section typically suffers from either of two problems:

1. it’s poorly written, because the author has run out of energy
2. it’s well written and contains the proposal’s strongest selling points, but because these points don’t appear until the last page they are lost on reviewers whose interest or attention has already waned.

Let’s deal with the second issue first. We recommend that any key ‘selling’ points should be highlighted earlier in the Research Plan, preferably on the first page. They need only be mentioned briefly there – summarised, paraphrased. You can then use the Outcomes & Significance section to recapitulate and flesh out these points, as well as to add any other relevant but less crucial points.

Now let’s deal with the first issue – how to conclude your proposal with a bang, not a whimper! For a start, use a tight, focused structure to deliver each point clearly and with maximum impact. We suggest that you:

- discuss outcomes and significance in two discrete subsections (e.g. outcomes first, significance second) or discuss one outcome and its significance, then the next outcome and its significance, and so on
• use bullet points or paragraphs to clearly distinguish between each key idea or aspect.

4.9.1 What’s the difference between outcomes and significance?
It’s helpful to have in your mind a clear conceptual distinction between outcomes and significance. You might think of outcomes as the specific and immediate consequences of your project, and significance as the broader and perhaps longer-term implications of those outcomes. Most outcomes can be stated as simple matters of fact. Points of significance, on the other hand, may require some discussion or argument.

4.9.2 Outcomes
The NHMRC is very keen on seeing research applied. If your project will yield outcomes that have no near-term application (e.g. it’s a basic science project), it might help to briefly explain what the eventual application will be and what the pathway to it will look like. If you’re planning on subsequently doing the next step or two of that translational work yourself (e.g. in a follow-up project), it’s a good idea to say so.

What doesn’t seem to rate well with reviewers is generic statements such as ‘This could be a potential drug target’. Such things are easy to say, but very difficult to actualize. A proposal that can demonstrate further evidence about the ‘potential drug target’ is more likely to be funded – e.g. evidence that target-specificity is likely to be achievable, that side-effects are unlikely, or that the drug is already in use (for another indication) and has therefore received TGA or FDA approval.

4.9.3 Significance
Significance, as noted earlier (see 1.8.3), is ‘not a measure of the prevalence/incidence of the health issue’. It is instead a measure of the extent to which your project is likely to:

• advance knowledge – i.e. make an important academic/intellectual contribution to knowledge in the field(s) of research (and beyond)
• have an impact on the health issue in question – i.e. make an important ‘real world’ difference to a health issue by improving clinical practice and/or public health and/or health policy.

‘Important’ is a key word in both points. Projects promising merely incremental advances or minimal impact are unlikely to be funded. Note also that a stipulated measure of importance is ‘the likely interest from other researchers, conference organisers, journals, community groups, and policy makers in the outcomes of the research’.

It can help to think about impact by asking yourself who or what will benefit from your project’s outcomes – e.g. researchers in your field (and beyond); a specific group of health professionals; a specific sector of health care; the health system as a whole; NHMRC health priorities; the National Health Priorities; Australia’s Strategic Research Priorities; health in the Asia-Pacific region; global health; patients, their families and/or carers; the health of a subpopulation or of the population as a whole; industry (e.g. medical technology); a sector of the economy or the economy as a whole.

Finally, think about how you might persuade the reviewers that your project needs to be funded now. If two research proposals are neck-and-neck in every other respect, the one that appears more urgent is surely going to win the race. Is the health problem worsening dramatically? Has the WHO issued a call to action? Has a golden opportunity presented itself to your research team? Is there only a short time period in which to conduct the research? And so on. But be careful not to fabricate the urgency of the matter.

4.9.4 Innovation
Anything innovative about the project (see 1.8.4) should also get a plug somewhere in the Outcomes & Significance section.
5 Writing the References (and in-text citations)

References relating to the Research Proposal must:

- not exceed 2 pages,
- provide a list of all references cited in the application in an appropriate standard journal format, NHMRC prefers the Author-date (also known as the Harvard System), Documentary-note and the Vancouver System,
- list authors in the order in which they appear in PubMed,
- only include references to cited work
- do not include links to external websites in any part of the application.

According to the NHMRC an appropriate standard journal format must include: author, date, title of article, publication name (e.g. journal title), page and volume information. Omitting any of these components could result in an application being ruled ineligible. Note that ‘et al.’ may be used after the third author.

Where publications in the References list have been authored by members of your own team, you may want to bold their names. Here’s an example (where D Cros is the CI):

5.1 Using RGMS ID numbers

The NHMRC has changed its instructions on this matter:

DO NOT use the RGMS ID number or RGMS sequence number created in the ‘Snapshot Reports’ to refer to specific publications in other sections of your application. Please use NHMRC’s preferred standard referencing styles...

Presumably this is because using the RGMS ID (i.e. PXXXXXXX) meant that reviewers had to refer to the Assessor Snapshot report to find out a publication’s details, which was onerous.

5.2 In-text citations

The drawback of the Harvard style for in-text citations (i.e. Author Date) is that, compared to a simple numbering system, it lengthens your proposal considerably. The most concise way to cite references in the text is to number them: 1, 2, 3 etc. Superscript numbering uses even less space: 1, 2, 3 etc. Numbering is possible with the Documentary-note and Vancouver referencing systems.

5.2.1 In-text citations of publications by your own team

Applicants usually like to draw attention to publications authored by members of their own team, typically by putting the names of CIs in bold. If you use a numbering system for in-text citations, this isn’t possible. To work around this, some people cite their own work like this: (CIA 3) or CIA 3. Alternatively, you can rephrase the sentence in which the citation occurs. For example:

CIB Cros co-authored a groundbreaking report which demonstrated that...

This may also be useful for Harvard-style citations of publications with more than 3 authors. Since these have the format (first Author et al. Date), the name of a CI who co-authored the publication but was not first author does not appear. So instead you could write:

CIB Cros co-authored a groundbreaking report (Chen et al. 2008) which demonstrated that...
5.3 Web links
You are allowed to use web links for ‘published or peer reviewed journal articles that are only available online’. Where you do include such links, you must provide the URL in full. (See 10.3 Content and Format Requirements in the NHMRC Funding Rules 2015.)
6 Writing the CI Time Commitment to this proposal

The time commitment of all CIs may be taken into account by reviewers when assessing the proposal’s Team Quality & Capability. That of the CIA is scrutinized particularly closely. However, the instructions are confusing:

- Each CI is to provide an overview of their time commitment to this research proposal, along with other research commitments. Applicants need to provide detailed information for assessors to assure them that each CI will and is able to provide a sufficient level of commitment to successfully undertake and complete the research proposed.
- For each CI (noting the CIA is the project leader and is responsible for the successful completion of the research proposal), applicants should detail the following in ¼ a page or less:
 - the NHMRC research time that will be dedicated to this application if it were to be funded (this application %);
 - the amount of research time each CI spends on other NHMRC grants (other grants %) in an average working week; and
 - a brief description outlining their role on this proposal.

The confusion arises because the percentages you are required to provide for the first two points are proportions of time spent on NHMRC-funded research – essentially arbitrary figures – and bear no relation to actual hours spent on research nor to research commitments overall. Therefore they do not satisfy the requirement to assure assessors that the CI can commit sufficient time to the proposed project.

6.1 Include your hours per week

The crucial piece of information that’s missing is how many hours per week (on average) each CI will devote to the project. This is what reviewers care about.

This year you must enter your CI Time Commitment details in a dedicated table included in the mandatory Word template (see 2.1.1), which should make it easier to complete this section. But we strongly recommend that below this table you provide additional information about the hours per week you will spend on the project.

6.2 Calculating % NHMRC Time

Guidance and examples are given in 4.3 B-GP: Grant Proposal in the Project Grant Scheme-Specific Advice & Instructions 2015. The key concept is that in any given year your % NHMRC Time should always equal 100%. This applies regardless of whether you are CI on one project or on six.

Note: NHMRC fellowships do not count towards % NHMRC Time. It is considered that fellowships provide salary support, not project support.

6.3 What is a reasonable time commitment?

The one other thing to consider, both in terms of % NHMRC Time and Hours per week, is that the time commitment you present in this table should be consistent with your role on the project. Bear in mind that the position of CIA will usually demand a higher proportion of time than will other CI positions. Also, bear in mind that a minimum credible allocation of % NHMRC Time is about 5-10%.
7 Writing the Team Quality & Capability statement and CI Track Records

7.1 General points

7.1.1 It’s the team that counts
The fact that the assessment criterion formerly known as ‘Track Record’ is now called ‘Team Quality & Capability’ tells you that the emphasis falls squarely on the team as a unit, not on the individual team members. In a sense, the whole must be greater than the sum of its parts.

For this reason it is highly desirable to demonstrate as much as possible that the CIs (and AIs) can already work together successfully as a team. Draw attention to previous collaborations, co-authored publications, co-supervised students, and so on.

How you present the Team Quality & Capability statement and CI Track Records also creates an impression about the extent to which the CIs form a coherent, professional team, or a grab-bag of individuals thrown together at the last minute. So, aim for consistency in content, formatting and writing style. It may help for the CIA to write their 2-page Track Record first, then send it to the other CIs as a model to emulate.

7.1.2 Relevance to the project: feasibility
In 2014, the phrase ‘relevant to application’ was added to the Team Quality & Capability assessment criterion. In effect, an ostensibly weaker team whose experience and expertise relate directly to the project in question may score better than an ostensibly stronger team whose don’t. Reviewers want to see that every aspect of the proposed work is covered by the expertise of someone on the team, because this is a crucial indicator of feasibility:

Team quality and capability is considered in terms of whether an applicant’s previous research demonstrates that the investigator(s) is capable of achieving the proposed project and/or ability to deliver the proposed project in terms of having the appropriate mix of research skills and experience.

Attachment B: Guidance for applicants to address the project grants assessment criteria, Project Grants Scheme-Specific Funding Rules 2015

In combination, then, the 1-page TQC statement and the 2-page CI Track Records should clearly demonstrate that all the skills and experience necessary to the project’s success are available in the team. This is why CIs should tailor their Track Records to the proposed project; but you may find that some CIs are reluctant to do this. The skills and experience of AIs can be discussed in the TQC statement.

A useful exercise is to draw up a matrix which lists, on one axis, all the methods and techniques to be used in the project, and, on the other, all your CIs and AIs. You should be able to tick off every method and technique against at least one of the CIs and AIs; if you can’t, find a CI or AI to fill the gap. (You could even include such a matrix in the TQC statement itself.)

7.1.3 Chief Investigators and Associate Investigators
Your final score for Team Quality & Capability will be based exclusively on the track records of the CIs. In this respect, AIs don’t count. Where AIs do count is towards your score for Scientific Quality, principally in terms of their contribution to the project’s feasibility. But although AIs can fill some gaps in expertise, they shouldn’t be relied on to provide the core skills required for the project’s success.

The NHMRC defines AIs variously, as follows:

An Associate Investigator (AI) is defined as an investigator who provides some intellectual and practical input into the research and whose participation warrants inclusion of their name on publications.

7.2.4 Research Support Schemes, NHMRC Funding Rules 2015
An AI is an investigator who provides intellectual input into the research and whose participation warrants inclusion of their name on publications.

5.7 A-RT: Research Team And Commitment, NHMRC Advice & Instructions to Applicants 2015

7.1.4 Senior and junior members of the team
The Team Quality & Capability statement requires information about how ‘junior’ members contribute to the team, and the category descriptors for scores of 5 and above distinguish between ‘senior’ and ‘junior’ team members. For example, the category descriptor for a score of 6 now includes this:

Relative to opportunity, the applicant team ... has senior members with excellent national and/or international reputations in the field of research relevant to the application ... [and] may involve junior members who are strong contributors to the overall team quality & capability or will have the capacity to do so due to the availability of strong mentoring.

The NHMRC does not, however, define ‘senior’ and ‘junior’. It is left to your discretion. For ‘junior’ a rule of thumb is that it is synonymous with ‘ECR’, which usually means up to 10 years postdoc. But not everyone will want to be pigeon-holed by this rule of thumb.

The reference in the category descriptors to mentoring of junior CIs is new this year. This suggests you will need to state explicitly how junior team members will be mentored by senior team members (see the template for the Team Quality & Capability statement).

7.1.5 First amongst equals: role and qualities of the CIA
Although the Team Quality & Capability score is for the applicant team as a whole, more is expected of the CIA:

CIA is the project leader and is responsible for the successful completion of the research proposal

4.3 B-GP: Grant Proposal, Project Grant Scheme-Specific Advice & Instructions 2015

The CIA must therefore demonstrate their ability to lead the project and the team.

This can make it difficult for junior researchers. On many panels, putting a junior CI in the critical CIA (or even CIB) position is considered very risky. To have any chance of success, a junior CIA must be ‘stellar’ (e.g. high productivity, some senior author papers) and supported by an experienced team. Even then, a common question is whether the junior CIA has the clout to manage a team of more senior people.

On some panels, a junior CIA with a senior CIB has raised the question why the more experienced person isn’t leading the project, with a common concern being that the senior CIB will not have time to adequately mentor the junior CIA.

By definition, New Investigators have not been a named CI on a major grant before, let alone led one. But New Investigator CIs will still need to persuade reviewers of their ability or potential to lead the project, preferably with reference to smaller projects that they have led to a successful conclusion.

7.1.6 Relative to opportunity
The Team Quality & Capability criterion is assessed ‘relative to opportunity’. This concept means your record of research achievement is to be judged in the light of the opportunities (or lack of) you have had.

Circumstances considered under relative to opportunity include:

- amount of time spent as an active researcher;
- employment outside the research sector including time spent working in industry;
- career disruption [see below];
- available resources;
- clinical, administrative or teaching workload;
- relocation of an applicant and his/her research laboratory or clinical practice setting or other similar circumstances that impact upon research productivity;
• restrictions on publication associated with time spent working in other sectors (e.g. industry, policy and government); and
• the typical performance of researchers in the research field in question.

6.1 Relative to Opportunity (NHMRC Funding Rules 2015)

Assessors and GRPs take ‘relative to opportunity’ considerations very seriously. In fact a common complaint is that applicants don’t provide enough information for a proper assessment to be made. Advice on providing this information is given in the accompanying CI Track Record template.

7.1.7 Career disruption
Career disruption is a special subcategory of ‘relative to opportunity’ and, again, is taken very seriously by assessors and GRPs. For the purpose of assessing a CI’s track record, the career disruption must have occurred within the last 5 years.

A career disruption involves a prolonged interruption to an applicant’s capacity to work, due to:
• Pregnancy;
• Major illness; or
• Carer responsibilities including parental leave and care for immediate family (e.g. spouse, children or elderly parent).

The interruption will involve a continuous absence from work for periods of one month or greater and/or a long-term partial return to work (e.g. part-time absences from work due to circumstances classified as career disruptions).

6.1.1 Career Disruption (NHMRC Funding Rules 2015)

If you have experienced career disruption in the last 5 years, you should bring it to the reviewers’ attention. Advice on how to do this is given in the accompanying CI Track Record template. See also 4.3 B-GP: Grant Proposal in Project Grant Scheme-Specific Advice & Instructions 2015.

7.1.8 Feasibility
The relevance of the team’s track record to the project is a crucial indicator of feasibility:

Team quality and capability is considered in terms of whether an applicant’s previous research demonstrates that the investigator(s) is capable of achieving the proposed project and/or ability to deliver the proposed project in terms of having the appropriate mix of research skills and experience.

Attachment B - Guidance for applicants to address the project grants assessment criteria (Project Grants Scheme-Specific Funding Rules 2015)

So, in combination the 1-page TQC statement and the 2-page CI Track Records should clearly demonstrate that all the skills and experience necessary to the project’s success are available in the team. (If you want to discuss the contribution of Al’s, you can do so in the TQC statement.)

A useful exercise is to draw up a matrix which lists, on one axis, all the methods and techniques to be used in the project, and, on the other, all your CIs and Al’s. You should be able to tick off every method and technique against at least one of the CIs and Al’s; if you can’t, find a CI or Al to fill the gap. (You could even include such a matrix in the TQC statement itself.)

7.1.9 What period of time to focus on?
Focusing on ‘the last 5 years’ is mandated in the wording of the category descriptors (see Appendix B) and in the instructions for writing the CI Track Records (see 7.3). However, reviewers may be interested in, and influenced by, track record information that predates the last 5 years. In our CI Track Record template, we suggest how to do both without disobeying the guidelines.
7.1.10 **Impact factors and h-index**

Applicants must not include in any part of their application ... publication and citation metrics such as Journal Impact Factors, the previous Excellence in Research for Australia (ERA) Ranked Journal List or h-index.

10.3 Content and Format Requirements, *NHMRC Funding Rules 2015*

Applicants should note that journal impact factors or person-centric citation metrics such as the H-index should not be used, but citations can be used.

Attachment H: Guidance for assessors to assess the project grants assessment criteria, Project Grants Scheme-Specific Peer Review Guidelines for applications submitted 2015

The NHMRC ‘abolished’ the use of journal impact factors for peer review purposes in 2010 (see ‘Statement on the removal of impact factors from peer review’ available at http://www.nhmrc.gov.au/grants/policy). The workaround is to describe a journal as being, for example, ‘one of the top 5 journals in the field of x’.

Many applicants continue to include their h-index. Whether or not reviewers take it into consideration informally is difficult to determine, and probably a matter of the reviewer’s personal preference.

As far as we’re aware, no applications have been declared ineligible due to the inclusion of impact factors or h-indices. However, assessors do sometimes criticize the inclusion of these indicators.

7.2 Writing the Team Quality & Capability statement (1 page)

A template for the Team Quality & Capability statement is available from your research office.

In 2013 this statement was known as ‘Team Quality and Capability’; since 2014 it has been known as ‘Team Quality and Capability relevant to this proposal’. The NHMRC instructions say:

* A summary of the research team’s quality and capability must be contained in this section. Applicants should detail the following:
 * the expertise and productivity of team members relevant to the proposed project;
 * their influence in this specific field of research;
 * how the team will work together to achieve the project aims; and
 * how junior members are contributing to the overall track record of the team.

5.3 B-PR: Grant Proposal (*Advice & Instructions 2015*)

To keep things simple, make these bullet points the subheadings in your one-page statement, and address each point in turn. (Obviously the point about junior members depends on whether the team has any.)

The team, for the purposes of this statement, means CIs and AIs.

If you’re a sole CI, you still need to write a TQC statement. Chances are you will have AIs on the team anyway. But don’t feel obliged to fill up the entire page.

Write the statement so that it *complements* the individual CI Track Records rather than *repeats* them.

As mentioned in 7.1.8 Feasibility, you may wish to include a matrix of the team’s skills and experience.

For more advice and suggestions, see the TQC template.
7.3 Writing the CI Track Records (2 pages each)

A template for the CI Track Record is available from your research office.

As well as an autobiographical sketch of research career and profile, the Track Record is an opportunity to:

- impress upon the reviewer the quality of your research; that is, draw attention to highly ranked journals you have published in, high citation rates, evidence of status and peer recognition
- provide evidence of your productivity – ideally you will be able to demonstrate an upward trajectory in the last 5 years
- provide evidence for the feasibility of the accompanying research proposal; that is, demonstrate how your skills and experience align with and will contribute to the proposed research.

Officially the CI Track Record has two components:

- the top 5 publications in the last 5 years
- overall Track Record in the last 5 years

but see the CI Track Record template for an alternative (we think better) structure.

7.3.1 Top 5 publications in the last 5 years

CIs must:

...list their top 5 publications in the last 5 years and reasons why these publications have been selected.

Note that it is not enough to list 5 publications and leave it at that. Some discussion is required. You need to explain why the publications are important; if possible, also provide some evidence of their impact. For suggestions, see the CI Track Record template.

The guidelines say that reviewers will use this ‘top 5 publications’ information to assess the quality of the research team’s track record. But reviewers tend also to consider whether these publications demonstrate your expertise and experience relevant to the proposed project.

For more advice and suggestions, see the CI Track Record template.

7.3.2 Overall Track Record in the last 5 years

Applicants are asked to use this component (a) ‘to identify aspects of their track record that are in addition to their publication record’, because reviewers will already have access to the last 5 years of publications through the CV/Profile section in RGMS; and (b) to include any ‘relative to opportunity considerations’ they want reviewers to take into account.

It’s important to bear in mind that very little track record information appears in the Assessor snapshot report. This year the report will list: your publications in the last 5 years (CV-Pub: Publications) and your previous and current research funding (CV-RF: NHMRC Research Funding and CV-ORF: Other Research Funding). That’s it. Any other information you want assessors to take into consideration will have to be included in your CI Track Record. For suggestions, see the CI Track Record template.

The guidelines say that reviewers will use each CI’s ‘overall track record’, along with their publication record from the CV/Profile section in RGMS, to assess the productivity of the research team.

For more advice and suggestions, see the CI Track Record template.

7.3.3 Career disruption

If you wish to claim career disruption in the last 5 years, you may do so using an additional page. That is, you will now have a 3-page Track Record. There are very specific instructions as to what information to include in this page and how to set it out. See the CI Track Record template or 4.3 B-PR: Grant Proposal in Project Grants Scheme-Specific Advice & Instructions 2015.
Appendix A. Assessment Criteria
(You may want to print this and stick it on your wall.)

Scientific Quality (50%)
This includes the clarity of the hypotheses or research objectives, the strengths and weaknesses of the study design, and feasibility.

Applications may be assessed in terms of, but not limited to the following questions:

a. Clarity of the hypothesis or research objectives:
 i. Has the method/framework/approach been partially tested?
 ii. What outcome is sought in the proposed study? What exactly is the outcome measure?
 iii. Is it well integrated and adequately developed?

b. Is there a clear and appropriate research plan?
 i. What are the strengths and weaknesses of the study and its design?
 ii. Have any major pitfalls or problems been overlooked? Have alternative approaches been considered?
 iii. Is the plan well informed by knowledge of the literature?
 iv. Is the design appropriate for the aims of the research?

c. Feasibility
 i. Will the research plan successfully address the stated hypothesis or research objectives?
 ii. Are the goals concrete and achievable?
 iii. Is the investigating team appropriate – is it capable of achieving the goals? Does it have the right skills and expertise?

Note that the assessment of feasibility can include the contribution of Associate Investigators.

Significance of the expected outcomes and/or Innovation of the concept (25%)
This includes the potential to increase knowledge about human health, disease diagnoses, or biology of agents that affect human health, or the application of new ideas, procedures, technologies, programs or health policy settings to important topics that will impact on human health.

Applications need not be rated on both significance and innovation.

Applications may be assessed in terms of, but not limited to the following questions:

7.3.4 Significance
- Will there be advancement in knowledge from the outcomes of this study?
- If successful, will the study have a significant impact on the health issue at question?
 - Impact could be measured by advancement in general scientific knowledge, clinical and/or public health applications, policy development or change
 - NB: The significance of the study is not a measure of the prevalence/incidence of the health issue (e.g. cancer versus sudden infant death syndrome)
- What is the likely interest from other researchers, conference organisers, journals, community groups, and policy makers in the outcomes of the research?

7.3.5 Innovation
- Is the proposed research new/novel or creative (has imagination been used)?
- Are the aims transformative?
- Are the techniques cutting edge?
Team Quality & Capability (25%)

Team Quality & Capability is judged:

- relevant to the application
- relative to opportunity – with regard to factors such as career disruption, administrative and clinical/teaching load, and typical performance (including publications) for the field in question
- on the most recent five years – except where there is a career disruption.

Note that the track records of Associate Investigators do not contribute to the Team Quality & Capability score.

Note also that journal impact factors or person-centric citation metrics such as the H-index should not be used, but citations can be used.

Team quality and capability is considered in terms of whether an applicant’s previous research demonstrates that the investigator(s) is capable of achieving the proposed project and/or ability to deliver the proposed project in terms of having the appropriate mix of research skills and experience.

Where an application involves a CI team, the track record of all CIs is considered and will be assessed relative to opportunity (including career stage), based on relevance to the research being proposed and taking into account time commitment.

Team Quality and Capability may encompass the national and international standing of the applicant(s) based upon their research achievements, including but not limited to:

- research outputs relevant to the proposed field of research – most recent significant publications; publications that illustrate innovation and significance to past accomplishments; impact or outcome of previous research achievements, including effects on health care practices or policy; awards or honours in recognition of achievements;
- contribution to discipline or area – invitations to speak at international meetings, editorial appointments, specialist and high-level health policy committee appointments; and
- other research-related achievements – influence on clinical/health policy or practice, or provision of influential advice to health authorities and government; impacts on health via the broad dissemination of research outcomes, e.g. via mainstream media, the community or industry involvement.
Appendix B. Category Descriptors
(You may want to print this and stick it on your wall.)

We include only the Category Descriptors for scores of 4 and above. Scores of 3 and below are deemed not competitive.

<table>
<thead>
<tr>
<th>Scientific Quality (50%)</th>
<th>Significance and/or Innovation (25%)</th>
<th>Team Quality & Capability relevant to application and relative to opportunity (25%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasibility can include contribution of AIs</td>
<td>Significance of the potential outcomes &/or Innovation of the concept</td>
<td>Does not include AIs</td>
</tr>
</tbody>
</table>
| 7 Outstanding by international standards | The proposal has a research plan that:
• is well-defined, highly coherent and strongly developed
• has a near flawless study design
• is highly feasible with all of the required expertise, research tools and techniques established
• would be highly competitive with the best, similar research proposals internationally.
|
|
| The planned research:
• will result in a highly significant advance in knowledge in this field which addresses an issue of great importance to human health
• will result in fundamental outcomes in the science underpinning human health issues
• will translate rapidly into transforming fundamental outcomes in the practice of clinical medicine, public health or in health policy
• will almost certainly be the subject of invited plenary presentations at national and international meetings
• will almost certainly result in highly influential publications
| Relative to opportunity, the applicant team:
• has expertise that specifically targets the proposed research both in terms of its depth and/or breadth
• has over the last 5 years, a combined record of research achievement quality (as exemplified by the top 5 publications of each CI) and productivity (totality of outputs) and/or translation into practice that is outstanding by international standards commensurate with their field of research
• has senior members with outstanding national and international reputations in the field of research relevant to the application
• may involve junior members who are very strong contributors to the overall team quality & capability or will have the capacity to do so due to the availability of very strong mentoring by other members of the team.
|
| 6 Excellent | The proposal has a research plan that:
• is clearly defined, coherent and well developed
• has a strong study design
• is feasible with all of the required expertise, research tools and techniques established
• is likely to be competitive with strong, similar research proposals internationally.
|
| The planned research:
• will result in a significant advance in knowledge in this field which addresses an issue of importance to human health
• is likely to result in fundamental outcomes in the science underpinning human health issues
• is likely to translate into fundamental outcomes in the practice of clinical medicine, public health or in health policy
• will likely be the subject of invited plenary presentations at national and international meetings
• will likely result in influential publications
| Relative to opportunity, the applicant team:
• has expertise that is highly relevant to the proposed research both in terms of its depth and/or breadth
• has over the last 5 years, a combined record of research achievement quality (as exemplified by the top 5 publications of each CI) and productivity (totality of outputs) and/or translation into practice that is excellent by international standards commensurate with their field of research
• has senior members with excellent national and/or international reputations in the field of research relevant to the application
• may involve junior members who are strong contributors to the overall team quality & capability or will have the capacity to do so due to the availability of strong mentoring.
<p>|</p>
<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Research Plan</th>
<th>Research Plan</th>
<th>Relative to Opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Very good</td>
<td>The proposal has a research plan that:</td>
<td>The planned research:</td>
<td>Relative to opportunity, the applicant team:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• is generally clear in its scientific plan and is logical</td>
<td>• will advance knowledge in this field which addresses an issue of importance to human health</td>
<td>• raises only minor concerns regarding the depth and/or breadth of expertise relevant to the proposed research</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• raises only a few minor concerns with respect to the study design</td>
<td>• may result in fundamental outcomes in the science underpinning human health issues</td>
<td>• has over the last 5 years, a combined record of research achievement quality (as exemplified by the top 5 publications of each CI) and productivity (totality of outputs) and/or translation into practice which places it well above average for their peers or cohort</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• is feasible in all, or almost all areas – required techniques and tools either established or nearly established</td>
<td>OR</td>
<td>• members have very good and growing national and/or international reputations in the field of research relevant to the application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• may not be highly competitive with similar research proposals internationally.</td>
<td>• may translate into fundamental outcomes in the practice of clinical medicine, public health or in health policy</td>
<td>• may involve junior members who are valuable contributors to the team quality & capability or will have the capacity to do so due to the availability of some mentoring.</td>
</tr>
<tr>
<td>4</td>
<td>Good</td>
<td>The proposal has a research plan that:</td>
<td>The planned research:</td>
<td>Relative to opportunity, the applicant team:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• is generally solid in its scientific plan, but may not always be clear in its in its intent and may lack some focus</td>
<td>• may incrementally advance knowledge in the field which addresses an issue of some importance to human health</td>
<td>• raises some significant concerns regarding the depth and/or breadth of expertise relevant to the proposed research</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• raises several concerns regarding the study design</td>
<td>• is unlikely to result in fundamental outcomes in the science underpinning human health issues</td>
<td>• has, over the last 5 years, a combined record of research achievement quality (as exemplified by the top 5 publications of each CI) and productivity (totality of outputs) and/or translation into practice, that places them at an average level for their peers/cohort</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• raises doubts about the feasibility in some areas</td>
<td>OR</td>
<td>• members have good and growing national and/or international reputations in the field of research relevant to the application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• is not likely to be competitive with similar research proposals internationally.</td>
<td>• is unlikely to translate into fundamental outcomes in the practice of clinical medicine, public health or in health policy</td>
<td>• may involve some junior members who would have the potential to add to the team with mentoring, but there is little or no evidence of a mentoring framework to support them.</td>
</tr>
</tbody>
</table>