ADVANCED NANOMATERIALS CHARACTERISATION

PHY5AMC

2018

Credit points: 15

Subject outline

This subject introduces the fundamental theoretical framework, working principles and instrumentation of a range of techniques used in the morphological, structural and compositional characterisation of nanomaterials. The laboratory components of the subject provide students with intensive instruction and hands-on experience in these techniques enabling them to use these techniques to address a real world problem. Students investigate in depth an individual nanomaterial characterisation techniques with reference to the formal published literature. This subject is available to postgraduate students as part of a group of nanotechnology related subjects which deepen their knowledge of physics and introduce research related skills.

SchoolSchool of Molecular Sciences/LIMS

Credit points15

Subject Co-ordinatorPaul Pigram

Available to Study Abroad StudentsYes

Subject year levelYear Level 5 - Masters

Exchange StudentsYes

Subject particulars

Subject rules

Prerequisites Must be admitted in one of the following courses: SMNT, PSMSC, SZHSN or SZHSMN.

Co-requisitesN/A

Incompatible subjects PHY2IMG, PHY2SPM

Equivalent subjectsN/A

Special conditionsN/A

Readings

Resource TypeTitleResource RequirementAuthor and YearPublisher
ReadingsAn introduction to X-ray spectrometryRecommendedR. Jenkins, 1974Heyden
ReadingsAn introduction to X-ray spectrometryRecommendedK. L. Williams, 1987Allen& Unwin
ReadingsComputer assisted microscopyRecommendedJ. C. Russ, 1990Plenum Press
ReadingsElectron probe quantitationRecommendedK. F. J. Heinrich, D.E. Newbury (eds), 1991Plenum Press
ReadingsElements of X-ray diffractionRecommendedB. D. Cullity, 1977Addison-Wesley
ReadingsFundamentals of energy dispersive X-ray analysisRecommendedJ.C. Russ, 1984Butterworths
ReadingsPrinciples of Quantitative X-ray fluorescence analysisRecommendedR. Tertain and F. Claisse, 1982Heyden
ReadingsThe image processing handbookRecommendedJ.C. Russ, 1995Boca Raton: CRC Press

Graduate capabilities & intended learning outcomes

01. Diagrammatically represent, analyse and / or solve conceptual and numerical problems related to nanomaterials characterisation.

Activities:
This activity includes training on image analysis. Students are assigned a set of image analysis tasks to perform using the ImageJ software.

02. develop hands-on experience in techniques used in nanomaterials characterisation following instrument manuals and / or standard operating procedure.

Activities:
Students complete a series of laboratory experiments of three hours duration each, and submit a report that indicates their ability to detail and assess experimental data. Students follow written and verbal laboratory instructions to conduct the experiments accurately and safely.

03. Communicate knowledge, skills and ideas to others in the area of nanomaterials characterisation.

Activities:
The written research review and presentation will be assessed on the clarity on which they can communicate solutions, ideas and findings in an appropriate rigorous manner.

04. Critically review and analyse research data and interpret the results with reference to the scientific literature in order to develop appropriate conclusions and convey these in a written report.

Activities:
Students prepare an individual report in the style of an academic journal article which accurately describes the experiment, its findings and draws appropriate conclusions.

05. Describe the recent developments in the field of nanomaterials characterisation and identify areas which constitute interesting research problems. Apply research principles and methods applicable to the field of nanomaterials characterisation.

Activities:
Students are provided with a research topic related to nanomaterials characterisation. They are expected to conduct a literature search on the research topic and summarise their understanding in a written research review. Students give an oral presentation on their research topic to a peer group and the lecturer.

Subject options

Select to view your study options…

Start date between: and    Key dates

Melbourne, 2018, Semester 2, Day

Overview

Online enrolmentYes

Maximum enrolment sizeN/A

Enrolment information

Subject Instance Co-ordinatorPaul Pigram

Class requirements

Laboratory Class Week: 32 - 43
Seven 3.0 hours laboratory class per study period on weekdays during the day from week 32 to week 43 and delivered via face-to-face.

Lecture Week: 31 - 43
One 2.0 hours lecture per week on weekdays during the day from week 31 to week 43 and delivered via face-to-face.

Assessments

Assessment elementComments% ILO*
1 x 2 hour end of semester written exam (2000 word equiv)50 01
1 x written research review (1500 word equiv)20 03, 05
1 x extended lab report collated from multiple laboratory sessions (2000 word equiv)20 02, 03, 04, 05
1 x 10 min oral presentation on a research topic (500 word equiv)10 03, 05