Staff profile
Dr Todd Niven
Research Fellow
Faculty of Science, Technology and Engineering
School of Engineering and Mathematical SciencesDepartment of Mathematics and Statistics
Physical Sciences 2, Room 320, Melbourne (Bundoora)
- T: +61 3 9479 2597
- F: +61 3 9479 2466
- E: T.Niven@latrobe.edu.au
Qualifications
BSc (Hons), PhD
Area of study
Mathematics and Statistics
Brief profile
Research interests:
- constraint satisfaction and general algebra.
Recent publications
L. Barto, M. Kozik, M. Maroti, R. McKenzie and T. Niven, Congruence modularity implies cyclic terms for finite algebras, Algebra Universalis (2009), no. 3-4, 365-380.
L. Barto, M. Kozik, M. Maroti, T. Niven, CSP dichotomy for special triads, Proceedings of the Amer. Math. Soc. 137(2009) 2921-2934.
L. Barto, M. Kozik and T. Niven, The CSP dichotomy holds for digraphs with no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell),SIAM J. Comput. 38 (2008/09), no. 5, 1782–1802.
L. Barto, M. Kozik, T. Niven, Graphs, Polymorphisms and the Complexity of Homomorphism Problems, Proceedings of the 40th ACM Symposium on Theory of Computing, STOC'08 (2008), 789-796.
T. Niven, Structural reducts and the full implies strong problem, Algebra Universalis (2007), 101–107.
T. Niven, Dualisable but not fully dualisable algebras, Int. J. Algebra Comput. (2007), no. 2, 347–367.
B.A. Davey, M. Haviar and T. Niven, When does full imply strong? Houst. J. Math. (2007), no. 1, 1–22.
B.A. Davey, M. Haviar, T. Niven and N. Perkal, Full but not strong dualities at the finite level: extending the realm, Algebra Universalis (2007), no. 1, 37–56.
E. Beveridge, D. Casperson, J. Hyndman and T. Niven, Irresponsibility indicates an inability to be strong, Algebra Universalis (2006), 457-477.


