Staff profile

Dr Todd Niven

Research Officer

Faculty of Science, Technology and Engineering

School of Engineering and Mathematical Sciences
Department of Mathematics and Statistics

Physical Sciences 2, Room 320, Melbourne (Bundoora)

 

Qualifications

BSc (Hons), PhD

Area of study

Mathematics and Statistics

Brief Profile

Research interests:

  • constraint satisfaction and general algebra.

Recent Publications

L. Barto, M. Kozik, M. Maroti, R. McKenzie and T. Niven, Congruence modularity implies cyclic terms for finite algebras, Algebra Universalis  (2009), no. 3-4, 365-380.

L. Barto, M. Kozik, M. Maroti, T. Niven, CSP dichotomy for special triads, Proceedings of the Amer. Math. Soc. 137(2009) 2921-2934.

L. Barto, M. Kozik and T. Niven, The CSP dichotomy holds for digraphs with no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell),SIAM  J. Comput. 38 (2008/09), no. 5, 1782–1802.

L. Barto, M. Kozik, T. Niven, Graphs, Polymorphisms and the Complexity of Homomorphism Problems, Proceedings of the 40th ACM Symposium on Theory of Computing, STOC'08 (2008), 789-796.

T. Niven, Structural reducts and the full implies strong problem, Algebra Universalis (2007), 101–107.

T. Niven, Dualisable but not fully dualisable algebras, Int. J. Algebra Comput. (2007), no. 2, 347–367.

B.A. Davey, M. Haviar and T. Niven, When does full imply strong? Houst. J. Math. (2007), no. 1, 1–22.

B.A. Davey, M. Haviar, T. Niven and N. Perkal, Full but not strong dualities at the finite level: extending the realm, Algebra Universalis (2007), no. 1, 37–56.

E. Beveridge, D. Casperson, J. Hyndman and T. Niven, Irresponsibility indicates an inability to be strong, Algebra Universalis (2006), 457-477.