Staff profile

Professor Reinout Quispel

Professor

Faculty of Science, Technology and Engineering
School of Engineering and Mathematical Sciences
Department of Mathematics and Statistics

Physical Sciences 2, Room 307, Melbourne (Bundoora)

Qualifications

MSc, DipEd (Utrecht), PhD (Leiden)

Membership of professional associations

Australian Research Council Discovery Outstanding Researcher Award, Fellow Institute of Physics

Area of study

Mathematics and Statistics

Brief profile

Current members of our research group in scientific computation and dynamical systems are Dave McLaren, Peter van der Kamp, Dinh Tran and Theodoros Kouloukas.

Former members of our research group include Volker Grimm, Per Christian Moan, Lennaert van Veen, Priscilla Tse, Jitse Niesen, Graham Byrnes, Ramajayam Sahadevan, Chris Dyt, Kie Van Ivanky Saputra, Dion O'Neale, Omar Rojas, Will Wright, Sarah Lobb, Richard Norton and Chris Ormerod.

I am chief investigator of the ARC Centre of Excellence for Mathematics and Statistics of Complex Systems, which has a major node at La Trobe University.

Research interests

Numerical methods

- integrable systems & numerical methods

Recent publications

Reinout Quispel has been awarded the Lars Onsager Professorship and Medal: http://www.theaustralian.com.au/higher-education/appointments/maths-professor-wins-norwegian-award/story-e6frgckf-1226494482741

Reinout Quispel on how maths works in the real world: www.latrobe.edu.au/marketing/assets/podcasts/2012/120413-reinout-quispel.mp3

Reinout Quispel featured in 'The Mathematicians' Episode 5 of the BBC radio series 'The Tribes of Science'. In this episode Peter Curran met mathematicians visiting the Isaac Newton Institute of Mathematics in Cambridge. The episode was broadcast on Sunday, 6 Sep 2009, 14:45 on BBC Radio 4: www.bbc.co.uk/radio/player/b00mf27l

Older publications

  1. E. Celledoni, R.I. McLachlan, D.I. McLaren, B. Owren and G.R.W. Quispel, 'Integrability properties of Kahan's method', J. Phys. A47 (2014), 365202, 20pp.
  2. C.M. Ormerod, P.H. van der Kamp, J. Hietarinta and G.R.W. Quispel, ‘Twisted reductions of integrable lattice equations, and their Lax representations’, Nonlinearity 27 (2014), 1367-1390.
  3. H.Z. Munthe-Kaas, G.R.W. Quispel and A. Zanna, ‘Symmetric spaces and Lie triple systems in numerical analysis of differential equations’, BIT 54 (2014), 257-282.
  4. R.I. McLachlan and G.R.W. Quispel, ‘Discrete gradient methods have an energy conservation law', Discrete and Continuous Dynamical Systems, 34 (2014), 1099-1104.
  5. R.A. Norton and G.R.W. Quispel, ‘Discrete gradient methods for preserving a first integral of an ordinary differential equation’, Discrete and Continuous Dynamical Systems, 34 (2014), 1147-1170.
  6. A.N.W. Hone, P.H. van der Kamp, G.R.W. Quispel and D.T. Tran, 'Integrability of reductions of the discrete Korteweg de Vries and potential Korteweg de Vries equations' . Appendix, Proc. R Soc. A 469 (2013), 20120747.
  7. C.M. Ormerod, Peter H. van der Kamp and G.R.W Quispel, 'Discrete Painlevé equations and their Lax pairs as reductions of integrable lattice equations', J. Phys. A: Math. Theor. 46 (2013), 095204.
  8. E. Celledoni, R.I. McLachlan, B. Owren and G.R.W. Quispel, 'Geometric properties of Kahan's method', J. Phys. A: Math. Theor. 46 (2013) 025201, 12pp.
  9. T. Bridgman, W. Hereman, G.R.W. Quispel and P.H. van der Kamp, 'Symbolic computation of Lax Pairs of partial difference equations using consistency around the cube', Foundations of Computational Mathematics 13 (2013), pp. 517-544.
  10. E. Celledoni, V. Grimm, R.I. McLachlan, D.I. McLaren, D. O'Neale, B. Owren and G.R.W Quispel, 'Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method', J. Comp. Phys. 231 (2012), 6770–6789, 19pp. 
  11. D.K. Demskoi, D.T. Tran, P.H. van der Kamp and G.R.W. Quispel, 'A novel nth order difference equation that may be integrable', J. Phys. A: Math. Theor. 45 (2012), 135202, 10pp.
  12. D.T. Tran, P.H. van der Kamp and and G.R.W. Quispel, 'Involutivity of integrals of sine-Gordon, modified KdV and potential KdV maps', J. Phys. A: Math. Theor. 44 (2011), 295206, 13pp.
  13. E. Celledoni, R.I. McLachlan, B. Owren, and G.R.W. Quispel, 'On Conjugate B-Series and Their Geometric Structure', JNAIAM 5 (2010), 85-94.
  14. P.H. van der Kamp and G.R.W. Quispel, 'The staircase method: integrals for periodic reductions of integrable lattice equations', J. Phys. A: Math. Theor. 43 (2010), 465207, 34pp.
  15. K.V.I. Saputra, L. van Veen and G.R.W. Quispel, 'The saddle-node-transcritical bifurcation in a population model with constant rate harvesting' , DCDS-B14, (2010) 233-250.
  16. E. Celledoni, R. I. McLachlan, B. Owren and G.R.W. Quispel 'Energy-Preserving Integrators and the Structure of B-series'  , Foundations of Computational Mathematics 10 (2010), 673-693.
  17. D.T. Tran, P.H. van der Kamp and G.R.W. Quispel, 'Sufficient number of integrals for the pth order Lyness equation' (PDF 202KB), J.Phys.A: Math. Theor. 43 (2010), 302001.
  18. K.V.I. Saputra, G.R.W. Quispel and L. van Veen,'An integrating factor matrix method to find first integrals' (PDF 178KB), J.Phys.A: Math. Theor. 43 (2010), 225207.
  19. E. Celledoni, R.I. McLachlan, B. Owren and G.R.W. Quispel, 'Structure of B-series for some classes of Geometric Integrators' (PDF 53.9KB) , AIP Conference Proceedings 1168 (2009), 739-742.
  20. S.B. Lobb, F.W. Nijhoff and G.R.W. Quispel, 'Lagrangian multiform structure for the lattice KP system' (PDF 7.33 MB), J. Phys. A: Math. Theor. 42 (2009) 472002.
  21. E. Celledoni, R.I. McLachlan, D.I. McLaren, B. Owren, G.R.W. Quispel and W.M. Wright, Energy-preserving Runge-Kutta methods (PDF 123KB), ESAIM: M2AN 43 (2009), 645-649.
  22. Dinh T. Tran, Peter H. van der Kamp and G.R.W. Quispel, 'Closed-form expressions for integrals of traveling wave reductions of integrable lattice equations' (PDF 252 KB), J. Phys. A: Math. Theor. 42 (2009) 225201.
  23. R.I McLachlan, G.R.W. Quispel and P.S.P. Tse, ' Linearization-preserving self-adjoint and symplectic integrators' (PDF 677KB), BIT 49 (2009) 177-197.
  24. D.I McLaren and G.R.W. Quispel, 'Bootstrapping discrete-gradient integral-preserving integrators to fourth order', in: M. Daniel, S. Rajasekar (Eds.), Nonlinear Dynamics, Narosa Publishing House 2009, pp 157-171.
  25. E. Celledoni, D. McLaren, R.I .McLachlan, B. Owren, G.R. Quispel and W. Wright, 'Energy-preserving methods and B-series' (PDF 224KB), in: 21st Nordic Seminar on Computational Mechanics, T. Kvamsdal et al (Eds.), CIMNE 2008.
  26. R.I. McLachlan, H.Z. Munthe-Kaas, G.R.W. Quispel and A. Zanna, 'Guest Editor's Preface, Special Issues Dedicated to Arieh Iserles on the Occasion of His Sixtieth Birthday' (PDF 90KB), Foundations of Computational Mathematics 8 (2008) 287-532.    'Special Issues Table of Contents' (PDF 11KB).    Foundations of Computational Mathematics website.
  27. R.I. McLachlan, H.Z. Munthe-Kaas, G.R.W. Quispel and A. Zanna, 'Explicit Volume-Preserving Splitting Methods for Linear and Quadratic Divergence-Free Vector Fields, Special Issue Dedicated to Arieh Iserles on the Occasion of His Sixtieth Birthday' (PDF 561KB), Foundations of Computational Mathematics 8 (2008), pp. 335-355.
  28. V. Grimm and G.R.W. Quispel, 'Geometric integration methods that unconditionally contract volume', Applied Numerical Mathematics 58 (2008), 1103-1112.
  29. G.R.W. Quispel and D.I. McLaren, A new class of energy-preserving numerical integration methods (PDF 160KB), J. Phys. A: Math. Theor. 41 (2008), 045206 (7pp).
  30. O. Rojas, Peter H. van der Kamp and G.R.W. Quispel, 'Lax representation for integrable OΔEs' (PDF 956KB), proceedings `Symmetry and Perturbation Theory 2007', 271—272.
  31. P.H. van der Kamp. O. Rojas and G.R.W. Quispel, 'Closed-form expressions for integrals of MKdV and sine-Gordon maps' (PDF 125KB), J. Phys. A40 (2007), 12789 - 12798.
  32. A. Iserles, G.R.W. Quispel and P.S.P. Tse, 'B-series methods cannot be volume-preserving' (PDF 313KB), BIT 47 (2007), 351-378.www.damtp.cam.ac.uk/user/na/NA_papers/NA2006_04.pdf
  33. K. Maruno and G.R.W.Quispel, 'Construction of integrals of higher-order mappings' (PDF 95KB), J. Phys. Soc. Japan 75 (2006) 123001/1-123001/5.
  34. J.A.G. Roberts and G.R.W. Quispel, 'Creating and relating 3-dimensional integrable maps' (PDF 167KB), J. Phys. A39 (2006) L605-L615.
  35. A.Zanna (joint with R.I.McLachlan, H.Z.Munthe-Kaas and G.R.W.Quispel), 'Explicit, volume preserving splitting methods for divergence-free polynomial vector fields', Oberwolfach Report 14/2006, 853-854.
  36. G.R.W.Quispel (joint with D.I.McLaren), 'Integral-preserving integrators', Oberwolfach Report 14, (2006), 844-846.
  37. R.I. Mc Lachlan and G.R.W. Quispel, 'Geometric Integrators for ODEs' (PDF 972KB), J. Phys. A39 (2006) 5251-5286.
  38. G.R.W. Quispel and R.I. McLachlan (eds.), 'Geometric Numerical Integration of Differential Equations' (PDF 53KB), J. Phys. A39 (2006) 5251-5652.
  39. V. Grimm and G.R.W. Quispel, 'Geometric Integration Methods that preserve Lyapunov Functions' (PDF 803KB), BIT 45, (2005) 709-723.
  40. E.L. Mansfield and G.R.W Quispel, 'Towards a variational complex for the finite-element method', in: P. Winternitz, D. Gomez-Ullate, A. Iserles, D. Levi, P.J. Olver, R. Quispel, and P. Tempesta (Editors), Group Theory and Numerical Analysis, CRM Proceedings & Lecture Notes 39, AMS Providence 2005, 207-232.
  41. P. Winternitz, D. Gomez-Ullate, A. Iserles, D. Levi, P.J. Olver, R. Quispel, and P. Tempesta (Editors), 'Group Theory and Numerical Analysis', CRM Proceedings & Lecture Notes 39, AMS Providence (2005).
  42. G.R.W. Quispel, H.W. Capel and J.A.G. Roberts, 'Duality for discrete integrable systems', J. Phys. A38 (2005) 3965-3980.
  43. J.M. Tuwankotta, G.R.W.Quispel and K.M. Tamizhmani, 'Dynamics and bifurcations of a three-dimensional piecewise-linear integrable map', J. Phys. A37 (2004) 12041 - 12058.
  44. R.I. McLachlan and G.R.W. Quispel, 'Explicit geometric integration of polynomial vector fields' (PDF 367KB), BIT 44 (2004) 515 - 538.
  45. D.I. McLaren and G.R.W. Quispel, 'Integral-preserving integrators', J. Phys. A37 (2004) L489 - L495.
  46. R.I. McLachlan, M. Perlmutter and G.R.W. Quispel, 'On the nonlinear stability of symplectic integrators' (PDF 421KB), BIT 44 (2004) 99 - 117.
  47. R.I. McLachlan, M. Perlmutter and G.R.W. Quispel, 'Lie group foliations: dynamical systems and integrators' (PDF 277KB), Future Gen. Comp. Systems, 19 (2003) 1207 - 1219.
  48. J.M. Tuwankotta and G.R.W.Quispel, 'Geometric numerical integration applied to the elastic pendulum at higher order resonance' (PDF 292KB), J. Comp. and Appl. Maths. 154 (2003) 229 - 242.
  49. R.I. McLachlan and G.R.W.Quispel, 'Geometric integration of conservative polynomial ODEs' (PDF 89KB), Applied Num. Maths. 45 (2003) 411 - 418.
  50. G.R.W. Quispel and D.I. McLaren, 'Explicit volume-preserving and symplectic integrators for trigonometric polynomial flows', J. Comp. Phys. 186 (2003) 308 - 316.
  51. G.R.W. Quispel, 'An alternating integrable map whose square is the QRT map' (PDF 356KB), Phys.Lett. 307A (2003) 50-54.
  52. R.I. McLachlan and G.R.W. Quispel, 'Splitting methods', Acta Numerica 11 (2002) 341-434.
  53. J.A.G. Roberts, A. Iatrou and G.R.W. Quispel, 'Interchanging parameters and integrals in dynamical systems: the mapping case' (PDF 225KB), J. Phys. A35 (2002) 2309-2325.
  54. R.I. McLachlan and G.R.W. Quispel, 'What kinds of dynamics are there?', Nonlinearity 14 (2001) 1689-1705.
  55. G.R.W.Quispel, H.W.Capel and J.Scully, 'Piecewise-linear soliton equations and piecewise-linear integrable maps', J.Phys. A34 (2001) 2491-2503.
  56. H.Z.Munthe-Kaas, G.R.W.Quispel and A.Zanna, 'Generalized polar decompositions on Lie groups with involutive automorphisms', Foundations of Computational Mathematics 1 (2001) 297-324.
  57. R.I. McLachlan and G.R.W. Quispel, 'Six lectures on the geometric integration of ODEs' (PDF 1440KB), In "Foundations of Computational Mathematics", C.U.P. (2001), R.A. DeVore et al. eds, 155-210.
  58. G.R.W.Quispel and D.Levi, 'Discrete Painleve`equations from nonisospectral soliton equations', Proceedings of the Third Congress on Symmetry and Integrability of Difference Equations, CRM Proceedings 25 (2000) 363-366.
  59. R.I. McLachlan and G.R.W. Quispel, 'Numerical integrators that contract volume' (PDF 79KB), Appl. Numer. Math. 34 (2000) 253-260.
  60. G.B. Byrnes, F.Haggar and G.R.W. Quispel, 'Sufficient conditions for dynamical systems to have pre-symplectic or pre-implectic structures' (PDF 398KB), Physica 272A (1999) 99-129.
  61. R.I.McLachlan, G.R.W. Quispel and N. Robidoux, 'Geometric integration using discrete gradients', Phil. Trans. Roy. Soc. A 357 (1999) 1021-1045.
  62. R.I.McLachlan, G.R.W. Quispel and N. Robidoux, 'A unified approach to Hamiltonian systems, Poisson systems, gradient systems and systems with Lyapunov functions and/or first integrals' (PDF 167KB). Phys. Rev. Lett. 81 (1998) 2399-2403.
  63. G.R.W. Quispel and C.Dyt, 'Volume-preserving integrators have linear error growth' (PDF 766KB), Phys. Lett. 242A (1998) 25-30.
  64. R.I. McLachlan and G.R.W. Quispel, 'Generating functions for dynamical systems with symmetries, integrals, and differential invariants', Physica 112D (1998) 298-309.
  65. R.I. McLachlan, G.R.W. Quispel and G.S. Turner, 'Numerical Integrators that Preserve Symmetries and Reversing Symmetries' (PDF 239KB), SIAM J. Num. Anal. 35 (1998) 586-599.
  66. G.R.W. Quispel and C. Dyt, 'Solving ODE's Numerically while Preserving Symmetries, Hamiltonian Structure, Phase Space Volume or First Integrals'. Proceedings IMACS 1997 World Congress, A.Sydow, Ed., vol. 2, pp 601-607.
  67. R. Sahadevan and G.R.W. Quispel, 'Lie Symmetries and Linearisation of the QRT mapping', Physica 234A (1997) 775-784.
  68. F. Haggar, G.B. Byrnes, G.R.W. Quispel and H.W. Capel, 'k-integrals and k-Lie symmetries in discrete dynamical systems' (PDF 177KB), Physica 233A (1996) 379-394.
  69. R. Sahadevan, G.B. Byrnes and G.R.W. Quispel, 'Linearisation of Difference Equations, using Factorizable Lie Symmetries', CRM Proc. and Lecture Notes 9 D. Levi, L. Vinet and P.Winternitz, Eds. (AMS, Providence, R.I., 1996), 337-343.
  70. G.R.W. Quispel,F.W. Nijhoff and J.H.H.Perk (Eds), 'Statistical Mechanics, Soliton Theory, and Nonlinear Dynamics' (PDF 191KB), Physica 228A (1996) 1-366.
  71. G.R.W. Quispel and G.S. Turner, 'Discrete Gradient Methods for Solving ODE's Numerically while Preserving a First Integral', J. Phys. A29 (1996) L341-349.
  72. G.R.W. Quispel and H.W. Capel, 'Solving ODE's numerically while preserving a first integral' (PDF 653KB), Phys. Lett. 218A (1996) 223-228.
  73. G.R.W. Quispel, 'Chaos versus Order in Hamiltonian Dynamical Systems', in Statistical Mechanics and Field Theory' V.V. Bazhanov and C.J. Burden, Eds. (World Scientific, Singapore, 1995) 307-335.
  74. G.R.W. Quispel, 'Volume-preserving integrators' (PDF 469KB), Phys. Lett. 206A (1995) 26-30.
  75. J.S.W. Lamb and G.R.W. Quispel, 'Cyclic reversing k-symmetry groups' (PDF 412KB), Nonlinearity 8 (1995) 1005-1026.
  76. G.B. Byrnes, R. Sahadevan and G.R.W. Quispel, 'Factorizable Lie Symmetries and the Linearization of Difference Equations' (PDF 232KB), Nonlinearity 8 (1995) 443-459.
  77. J.S.W. Lamb and G.R.W. Quispel, 'Reversing k-symmetries in dynamical systems' (PDF 840KB), Physica 73D (1994) 277-304.
  78. G.R.W. Quispel and J.S.W. Lamb, 'Dynamics and k-symmetries', Hamiltonian Mechanics: Integrability and Chaotic Behaviour, J. Seimenis, Ed. (New York, Plenum, 1994) 307-314.
  79. G.S. Turner and G.R.W. Quispel, 'Tupling in Three-Dimensional Reversible Mappings' (PDF 753KB), J. Phys. A, 27 (1994) 757-762.
  80. G.R.W. Quispel and R. Sahadevan, 'Lie Symmetries and the Integration of Difference Equations' (PDF 682KB), Phys. Lett. 184A (1993) 64-70.
  81. G.R.W. Quispel and M.B. Sevryuk, 'KAM theorems for the product of two involutions of different types', Chaos 3 (1993) 757-769.
  82. G.R.W. Quispel, H.W. Capel and R. Sahadevan, 'Continuous Symmetries and Painlevé Reduction of the Kac-van Moerbeke Equation' (PDF 268KB), In Applications of Analytic and Geometric Methods in Nonlinear Differential Equations, P. Clarkson, Ed. (Kluwer, Dordrecht, 1993) 431-439.
  83. G.R.W. Quispel and R. Sahadevan, 'Continuous Symmetries of Difference Equations' (PDF 280KB), In Modern Group Analysis', N.H.Ibragimov, M.Torrisi and A.Valenti, Eds. (Kluwer, Dordrecht, 1993) 299-302.
  84. G.R.W. Quispel, 'Chaos and Time-Reversal Symmetry: An Introduction', in Nonlinear Dynamics and Chaos. R.L. Dewar and B.I. Henry, Eds. (World Scientific, Singapore, 1992).
  85. G.R.W. Quispel, H.W. Capel and R. Sahadevan, 'Continuous Symmetries of Differential-Difference Equations' (PDF 594KB), Phys. Lett. 170A (1992) 379-383.
  86. F.W. Nijhoff, V.G. Papageorgiou, H.W. Capel and G.R.W. Quispel, 'The Lattice Gel'fand-Dikii Hierarchy' (PDF 645KB), Inverse Problems 8 (1992) 597-621.
  87. J.A.G. Roberts and G.R.W. Quispel, 'Chaos and Time-Reversal Symmetry' (PDF 1800KB), Physics Reports 216 (1992) 63-177.
  88. G.R.W. Quispel and F.W. Nijhoff, 'Integrable Two-Dimensional Quantum Mappings' (PDF 488KB), Phys. Lett. 161A (1992) 419-422.
  89. H.W. Capel, F.W. Nijhoff, V.G. Papageorgiou and G.R.W. Quispel, 'Integrable Mappings and Soliton Lattices', In Solitons and Chaos, I. Antoniou and F.J. Lambert, Eds. (Springer, Berlin, 1991) 232-239.
  90. J.A.G. Roberts, T. Post, H.W. Capel and G.R.W. Quispel, 'Conservative versus Reversible Dynamical Systems', In Solitons and Chaos, I. Antoniou and F.J. Lambert, Eds. (Springer, Berlin, 1991) 218-226.
  91. K.M. Briggs, G.R.W. Quispel and C.J. Thompson, 'Feigenvalues for Mandelsets' (PDF 530KB), J. Phys. A24 (1991) 3363-3368.
  92. G.R.W. Quispel, H.W. Capel, V.G. Papageorgiou and F.W. Nijhoff, 'Integrable Mappings Derived from Soliton Equations' (PDF 243KB), Physica 173A (1991) 243-266.
  93. T. Post, H.W. Capel, G.R.W. Quispel and J.P. van der Weele, 'Bifurcations in two-dimensional reversible maps' (PDF 588KB), Physica 164A (1990) 625-662.
  94. R.J. Baxter and G.R.W. Quispel, 'Hamiltonian limit of the three-dimensional Zamolodchikov model', J. Stat. Phys. 58 (1990) 411-430.
  95. G.R.W. Quispel and H.W. Capel, 'Local Reversibility in Dynamical Systems' (PDF 665KB), Phys. Lett. 142A (1989) 112-116.
  96. G.R.W. Quispel, J.A.G. Roberts and C.J. Thompson, 'Integrable Mappings and Soliton Equations II' (PDF 790KB), Physica 34D (1989) 183-192.
  97. G.R.W. Quispel and J.A.G. Roberts, 'Conservative and Dissipative Behaviour in Reversible Dynamical Systems' (PDF 886KB), Phys. Lett. 135A (1989) 337-342.
  98. G.R.W. Quispel and J.A.G. Roberts, 'Reversible Mappings of the Plane' (PDF 422KB), Phys. Lett. 132A (1988) 161-163.
  99. G.R.W. Quispel, J.A.G. Roberts and C.J. Thompson, 'Integrable Mappings and Soliton Equations I' (PDF 325KB), Phys. Lett. 126A (1988) 419-421.
  100. G.R.W. Quispel, 'The Anisotropic Heisenberg Spin Chain and the Derivative Non-Linear Schrödinger Equation' (PDF 157KB), J. Phys. A20 (1987)L1069-L1070.
  101. F.C. Alcaraz, M.N. Barber, M.T. Batchelor, R.J. Baxter and G.R.W. Quispel, 'Surface Exponents of the Quantum XXZ, Ashkin-Teller and Potts Models' (PDF 182KB), J. Phys. A20 (1987) 6397-6409.
  102. C.J. Hamer, G.R.W. Quispel and M.T. Batchelor, 'Conformal Anomaly and Surface Energy for Potts and Ashkin-Teller Quantum Chains' (PDF 206KB), J. Phys. A20 (1987) 5677-5693.
  103. G.R.W. Quispel, 'Universal Functional Equation for Period-Doubling in Constant-Jacobian Maps' (PDF 559KB), Phys. Lett. 118A (1986) 457-462.
  104. G.R.W. Quispel, 'Analytical Renormalization Results for the Crossover Behaviour of Period-Doubling, from Conservative to Dissipative Systems' (PDF 192KB), Physica 18D (1986) 477-478.
  105. J.van der Linden, F.W. Nijhoff, H.W. Capel and G.R.W. Quispel, 'Linear Integral Equations and Multicomponent Nonlinear Integrable Systems' (PDF 405KB), Physica 137A (1986) 44-80.
  106. G.R.W. Quispel, 'Scaling of the "Superstable" Fraction of the 2-D Period-Doubling Interval' (PDF 542KB), Phys. Lett. 112A (1985) 353-356.
  107. G.R.W. Quispel, 'Analytical Crossover Results for the Feigenbaum Constants: Crossover from Conservative to Dissipative Systems' (PDF 682KB), Phys. Rev. 31A (1985) 3924-3928.
  108. J.B.J. van Zeijts, G.R.W. Quispel, T.P. Valkering and R.H.G. Helleman, 'Van Mechanische Banen naar Toevalsprocessen, Chaos en Turbulentie', Ned. Tijdschr. voor Natuurk. A50 (1984) 90-95 (in Dutch).
  109. F.W. Nijhoff, H.W. Capel, G.L. Wiersma and G.R.W. Quispel, 'Backlund Transformations and 3-Dimensional Lattice Equations' (PDF 368KB), Phys. Lett. 105A (1984) 267-272.
  110. F.W. Nijhoff, H.W. Capel, G.L. Wiersma and G.R.W. Quispel, 'Linearizing Integral Transform and Partial Difference Equations' (PDF 232KB), Phys. Lett. 103A (1984) 293-297.
  111. G.R.W. Quispel, F.W. Nijhoff, H.W. Capel and J.van der Linden, 'Linear Integral Equations and Nonlinear Difference-Difference Equations' (PDF 336KB), Physica 125A (1984) 344-380.
  112. G.R.W. Quispel, F.W. Nijhoff, H.W. Capel and J. van der Linden, 'Backlund Transformations and Singular Integral Equations' (PDF 504KB), Physica 123A (1984) 319-359.
  113. J.H.H. Perk, H.W. Capel, G.R.W. Quispel and F.W. Nijhoff, 'Finite-Temperature Correlations for the Ising Chain in a Transverse Field' (PDF 481KB), Physica 123A (1984) 1-49.
  114. G.R.W. Quispel, 'Linear Integral Equations and Soliton Systems'  Thesis, University of Leiden, Department of Theoretical Physics, 1983.
  115. F.W. Nijhoff, H.W. Capel and G.R.W. Quispel, 'Integrable Lattice Version of the Massive Thirring Model and its Linearization' (PDF 114KB), Phys. Lett. 98A (1983) 83-86.
  116. F.W. Nijhoff, G.R.W. Quispel and H.W. Capel, 'Linearization of Nonlinear Difference-Difference Equations' (PDF 529KB), Phys. Lett. 97A (1983) 125-128.
  117. F.W. Nijhoff, G.R.W. Quispel and H.W. Capel, 'Linearization of Nonlinear Differential-Difference Equations' (PDF 206KB), Phys. Lett. 95A (1983) 273-276.
  118. F.W. Nijhoff, G.R.W. Quispel, J. van der Linden and H.W. Capel, 'On Some Linear Integral Equations Generating Solutions of Nonlinear Partial Differential Equations' (PDF 673KB), Physica 119A (1983) 101-142.
  119. F.W. Nijhoff, H.W. Capel, G.R.W. Quispel and J. van der Linden, 'The Derivative Nonlinear Schrödinger Equation and the Massive Thirring Model' (PDF 432KB), Phys. Lett. 93A (1983) 455-458.
  120. G.R.W. Quispel and H.W. Capel, 'The Anisotropic Heisenberg Spin Chain and the Nonlinear Schrödinger Equation' (PDF 718KB), Physica 117A (1983) 76-102.
  121. G.R.W. Quispel, F.W. Nijhoff and H.W. Capel, 'Linearization of the Boussinesq Equation and the Modified Boussinesq Equation' (PDF 147KB), Phys. Lett. 91A (1982) 143-145.
  122. F.W. Nijhoff, J. van der Linden, G.R.W. Quispel, H.W. Capel and J. Velthuizen, 'Linearization of the Nonlinear Schrödinger Equation and the Isotropic Heisenberg Spin Chain' (PDF 337KB), Physica 116A (1982) 1-33.
  123. F.W. Nijhoff, J. van der Linden, G.R.W. Quispel and H.W. Capel, 'Linearization of the Nonlinear Schrödinger Equation and the Isotropic Heisenberg Spin Chain' (PDF 402KB), Phys. Lett. 89A (1982) 106-108.
  124. G.R.W. Quispel and H.W. Capel, 'The Nonlinear Schrödinger Equation and the Anisotropic Heisenberg Spin Chain' (PDF 482KB), Phys. Lett. 88A (1982) 371-374.
  125. G.R.W. Quispel and H.W. Capel, 'Equation of Motion for the Heisenberg Spin Chain' (PDF 480KB), Physica 110A (1982) 41-80.
  126. G.R.W. Quispel and H.W. Capel, 'Equation of Motion for the Heisenberg Spin Chain' (PDF 288KB), Phys. Lett. 85A (1981) 248-250.