Metal chemistry and luminescent materials

Metal-containing molecules are a challenge for computational methods, yet such molecules are the essence of modern materials. We are interested in modeling main group and metal chemistry for both fundamental understanding and the development of applications.

We use computational chemistry to model important optical properties of light-emitting substances (e.g. iridium complexes). We are interested in both absorption (fluorescence) and emission (phosphorescence) properties in the development of LEDs and sensors (materials science). We are focused on the electrochemical and photophysical properties of metal-containing species, and have published a significant number of papers utilizing Ru and Ir complexes. We are also exploring gold chemistry in collaboration with experimental colleagues.

We are interested in the application of computational quantum chemistry to transition metal chemistry; for molecular structures, properties, spectroscopies and chemical reactions. Transition metal chemistry impacts on organometallic chemistry and biochemistry. One area of interest in the magnetic, electric and optical properties of metallocene type molecules, such as ferrocene and ruthenocene (and derivatives). These molecules may be considered prototypes of many organometallic compounds. Derivative metallocenes show promise as non-linear optical materials. We are interested in the accurate modelling of optical properties of metallocenes with the goal of discovering new, optically active materials.