Computational quantum chemistry – development and benchmarking

The development and benchmarking of new theoretical methods is an area of interest. Our group has contributed to the DALTON quantum chemistry program. Benchmarking quantum chemistry methods is a central component of this work. As an example, DFT analytical geometrical and magnetic second derivatives have been implemented within Dalton. The first allows the efficient calculations of molecular hessians and harmonic vibrational frequencies, while the second allows the calculation of magnetic susceptibilies (magnetizabilities) and molecular g-tensors. The implemented analytical magnetic second derivatives magnetic include the use of London orbitals (i.e., the GIAO method) for the calculation of magnetizabilities and rotational g-sensors. Along with the implementation of these methods we have been involved in carrying out benchmark calculations and applications of DFT magnetic properties.

Benchmarking is an integral component of our research, due to the need to accurately and reliably predict molecular properties.