New fluorescent probes for visualising cell structures and function

Organic fluorogens with aggregation-induced emission (AIE) characteristics have demonstrated their potential to be ideal candidates for live cell imaging. Opposite to conventional organic dyes, the AIE luminogens are non-luminescent when molecularly dissolved but highly emissive upon aggregation. As small molecules, the AIE luminogens normally enter cells through diffusion, accumulate in the target location, and generate light emission. Inherently, they possess large Stokes shift (> 100 nm) with appreciable brightness and they are resistant to photo-bleaching and blinking, owing to the formation of aggregates inside the cells. In addition, they are structurally simple and synthetically accessible: the excitation/emission wavelengths as well as the functionalities can be fine-tuned via structural modification. In this study, we would like to synthesize new AIE dyes and explore their applications for specific imaging of different organelles, tracking dynamics of mitochondria as well as mapping intracellular environment in physiological and pathological conditions via advanced fluorescence imaging techniques.