Capturing early-stage protein aggregations and the role of misfolded proteins

Highly ordered protein aggregates termed amyloid fibrils are associated with a wide range of diseases including neurodegenerative diseases and amyloidosis. The transition from soluble functional protein into insoluble amyloid fibril occurs via a complex process involving the initial generation of highly dynamic early-stage aggregates or pre-fibrillar species. Traditional amyloid probes, for example, thioflavin T and Congo red, have been used for decades as “gold standard” for detecting amyloid fibrils in solution and in tissue section, respectively. However, these well-established dyes can hardly detect the presence of prefibrillar species in the early stage of protein aggregation process, which have been proposed to play a key role in the cytotoxicity of amyloid proteins and pathogenesis of neurodegenerative diseases. Our focus will be on the fluorescent dyes that are able to detect the emergence of prefibrillar species in the early stage of protein aggregation. This project will use this new probe as well as other biochemical and biophysical techniques to study the aggregation behavior of a wide range of amyloid proteins, investigate the toxicity of different aggregated species, and evaluate the effect of inhibitors on these processes.