Discovering new organic chemistry using an inorganic touch

The invention of new organic chemical reactions and novel classes of organic compounds is a challenging but critical area in synthetic chemistry. We are primarily inorganic chemists, however using a philosophy of simple viewing carbon as another main group metal chemistry will allow us to unlock new organic chemistry. For example, we are using CO as a labile ligand to stabilize the otherwise unattainable perfluoronated trityl cation and targeting the long sought after cyclopentadienyl cation by trying to "fool" the central carbon atom into thinking it is a boron (Iverson et al., 2014). In another project (funded by an ARC DECRA) we are using N-heterocyclic carbene ligands to stabilize small carbon fragments such as C2 and C3, then attempting to utilize these carbon coordination complexes as synthetic sources of those fragments.